IDEAS home Printed from https://ideas.repec.org/p/ecm/nawm04/280.html
   My bibliography  Save this paper

Calculating Comparable Statistics from Incomparable Surveys, with an Application to Poverty in India

Author

Listed:
  • Alessandro Tarozzi

Abstract

We develop an intuitive and easily implemented procedure to recover comparability over time of statistics computed using databases made incomparable by changes in survey design. Our methodology can be adopted whenever the statistic of interest satisfies a certain simple moment condition. The moment condition is satisfied by many interesting economic indicators, including a broad range of poverty and inequality measures. The procedure we propose requires the existence of a set of auxiliary variables whose reports are not affected by the different survey design, and whose relation with the main variable of interest is stable across the surveys. The adjusted estimates can be recovered by using a two-step method of moments framework. Root-n consistency follows easily under regularity conditions. Because most household surveys adopt a multi-stage design, we provide expressions for the asymptotic variance which are robust to the presence of clustering and stratification. We use our adjustment procedure to estimate poverty counts from the 55th Round of the Indian National Sample Survey, a large household survey carried out in 1999-2000. Due to important changes in the adopted questionnaire the unadjusted figures are likely to understate poverty relative to the previous rounds. We provide evidence supporting the plausibility of the identifying assumptions and we conclude that most of the very large reduction in poverty implied by the unadjusted figures is real

Suggested Citation

  • Alessandro Tarozzi, 2004. "Calculating Comparable Statistics from Incomparable Surveys, with an Application to Poverty in India," Econometric Society 2004 North American Winter Meetings 280, Econometric Society.
  • Handle: RePEc:ecm:nawm04:280
    as

    Download full text from publisher

    File URL: http://www.econ.duke.edu/~taroz/Tarozzi.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin Browning & Thomas F. Crossley & Guglielmo Weber, 2003. "Asking consumption questions in general purpose surveys," Economic Journal, Royal Economic Society, vol. 113(491), pages 540-567, November.
    2. repec:pri:rpdevs:deaton_tarozzi_prices_poverty is not listed on IDEAS
    3. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    4. Erich Battistin & Raffaele Miniaci & Guglielmo Weber, 2003. "What Do We Learn from Recall Consumption Data?," Journal of Human Resources, University of Wisconsin Press, vol. 38(2).
    5. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, October.
    6. John Gibson & Jikun Huang & Scott Rozelle, 2003. "Improving Estimates of Inequality and Poverty from Urban China's Household Income and Expenditure Survey," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 49(1), pages 53-68, March.
    7. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    8. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    9. Jean Olson Lanjouw & Peter Lanjouw, 2001. "How to Compare Apples And Oranges: Poverty Measurement Based on Different Definitions of Consumption," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 47(1), pages 25-42, March.
    10. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    11. Angus Deaton and Jean Drèze & Jean Drèze, 2002. "Poverty and Inequality in India: A Reexamination," Working papers 107, Centre for Development Economics, Delhi School of Economics.
    12. Orazio Attanasio & Erich Battistin & Hidehiko Ichimura, 2004. "What Really Happened to Consumption Inequality in the US?," NBER Working Papers 10338, National Bureau of Economic Research, Inc.
    13. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    14. John Gibson, 2002. "Why Does the Engel Method Work? Food Demand, Economies of Size and Household Survey Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(4), pages 341-359, September.
    15. repec:pri:rpdevs:deaton_tarozzi_prices_poverty.pdf is not listed on IDEAS
    16. Bhattacharya, Debopam, 2005. "Asymptotic inference from multi-stage samples," Journal of Econometrics, Elsevier, vol. 126(1), pages 145-171, May.
    17. Gibson, John & Huang, Jikun & Rozelle, Scott, 2001. "Why is income inequality so low in China compared to other countries?: The effect of household survey methods," Economics Letters, Elsevier, vol. 71(3), pages 329-333, June.
    18. Erich Battistin, 2002. "Errors in Survey Reports of Consumption Expenditures," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 C4-2, International Conferences on Panel Data.
    19. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    20. repec:bla:obuest:v:64:y:2002:i:4:p:341-59 is not listed on IDEAS
    21. repec:pri:rpdevs:deaton_dreze_poverty_india is not listed on IDEAS
    22. Jeffrey M. Wooldridge, 1999. "Asymptotic Properties of Weighted M-Estimators for Variable Probability Samples," Econometrica, Econometric Society, vol. 67(6), pages 1385-1406, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Prokhorov, Artem & Schmidt, Peter, 2009. "GMM redundancy results for general missing data problems," Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
    3. Giovanni Forchini & Grant Hillier, 2005. "Ill-conditioned problems, Fisher information and weak instruments," CeMMAP working papers CWP04/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    5. Rafael Perez Ribas & Fabio Veras Soares & Clarissa Gondim Teixeira & Elydia Silva & Guilherme Issamu Hirata, 2010. "Beyond Cash: Assessing Externality and Behaviour Effects of Non-Experimental Cash Transfers," Working Papers 65, International Policy Centre for Inclusive Growth.
    6. Hai-Anh H. Dang & Peter F. Lanjouw, 2023. "Regression-based imputation for poverty measurement in data-scarce settings," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 13, pages 141-150, Edward Elgar Publishing.
    7. Joachim Inkmann, 2010. "Estimating Firm Size Elasticities of Product and Process R&D," Economica, London School of Economics and Political Science, vol. 77(306), pages 384-402, April.
    8. Weili Ding & Steven F. Lehrer, 2010. "Estimating Treatment Effects from Contaminated Multiperiod Education Experiments: The Dynamic Impacts of Class Size Reductions," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 31-42, February.
    9. Inkmann, J., 2005. "Inverse Probability Weighted Generalised Empirical Likelihood Estimators : Firm Size and R&D Revisited," Other publications TiSEM c39cff1f-16c1-4446-a83f-c, Tilburg University, School of Economics and Management.
    10. Tenglong Li & Jordan Lawson, 2021. "A generalized bootstrap procedure of the standard error and confidence interval estimation for inverse probability of treatment weighting," Papers 2109.00171, arXiv.org.
    11. Michael Lechner, 2004. "Sequential Matching Estimation of Dynamic Causal Models," University of St. Gallen Department of Economics working paper series 2004 2004-06, Department of Economics, University of St. Gallen.
    12. Orazio Attanasio & Erich Battistin & Hidehiko Ichimura, 2007. "What Really Happened to Consumption Inequality in the United States?," NBER Chapters, in: Hard-to-Measure Goods and Services: Essays in Honor of Zvi Griliches, pages 515-543, National Bureau of Economic Research, Inc.
    13. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
    14. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    15. Martin Huber, 2012. "Identification of Average Treatment Effects in Social Experiments Under Alternative Forms of Attrition," Journal of Educational and Behavioral Statistics, , vol. 37(3), pages 443-474, June.
    16. Laszlo Goerke & Markus Pannenberg, 2005. "Severance Pay and the Shadow of the Law: Evidence for West Germany," Discussion Papers of DIW Berlin 541, DIW Berlin, German Institute for Economic Research.
    17. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    18. Villalobos Barría, Carlos & Klasen, Stephan, 2016. "The impact of SENAI's vocational training program on employment, wages, and mobility in Brazil: Lessons for Sub Saharan Africa?," The Quarterly Review of Economics and Finance, Elsevier, vol. 62(C), pages 74-96.
    19. Martin Huber, 2010. "Identification of average treatment effects in social experiments under different forms of attrition," University of St. Gallen Department of Economics working paper series 2010 2010-22, Department of Economics, University of St. Gallen.
    20. repec:ebl:ecbull:v:3:y:2004:i:9:p:1-12 is not listed on IDEAS
    21. John DiNardo & David S. Lee, 2010. "Program Evaluation and Research Designs," Working Papers 1228, Princeton University, Department of Economics, Industrial Relations Section..

    More about this item

    Keywords

    Poverty; India; Method of Moments; Household Surveys;
    All these keywords.

    JEL classification:

    • O53 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Asia including Middle East
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nawm04:280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.