IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3891-d391968.html
   My bibliography  Save this article

Effects of International Crude Oil Prices on Energy Consumption in China

Author

Listed:
  • Gaolu Zou

    (School of Tourism, Culture and Industries, Chengdu University, Chengdu 610106, China
    The Ronald Coase Center for Property Rights Research, The University of Hong Kong, Hong Kong, China)

  • Kwong Wing Chau

    (The Ronald Coase Center for Property Rights Research, The University of Hong Kong, Hong Kong, China
    Department of Real Estate and Construction, Faculty of Architecture, The University of Hong Kong, Hong Kong, China)

Abstract

This study aims to test the effects of changes in international crude oil prices on changes in crude oil and hydropower use from 1965 to 2016. We suggest a cointegration relationship between the consumption of coal, crude oil, and hydropower and the real crude oil price. The real price is weakly exogenous for the long-run relationship and has impacted energy consumption accordingly. The long-run crude oil price elasticity of oil use is 0.460. Our estimate suggests a positive oil price–oil use relationship in China, which is dramatically different from many previous studies but is consistent with a few past studies. The growth in external oil prices may lead to a long-run increase in hydropower use in China, with a long-run price elasticity of 0.242. The long-run crude oil price elasticity of coal use is −0.930. Hence, increased oil and hydropower use could make up the energy supply–demand gap left over by the decreased coal use. Strictly planned domestic fuel prices and rapidly growing family incomes should diminish the negative effect of external oil prices on domestic crude oil demand. In the long run, given a strictly managed energy price, the growth in external oil prices is not likely to noticeably restrain the domestic oil demand or lead to a dramatic increase in coal use. We suggest that the large-scale development and utilization of hydropower may be inappropriate. Coal utilization policies must be reviewed. The appropriate increase in clean coal consumption could reduce the consumption of crude oil and hydropower; meanwhile, carbon emissions will not increase.

Suggested Citation

  • Gaolu Zou & Kwong Wing Chau, 2020. "Effects of International Crude Oil Prices on Energy Consumption in China," Energies, MDPI, vol. 13(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3891-:d:391968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    2. Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.
    3. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    4. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    5. Jian Chai & Youhong Zhou & Ting Liang & Limin Xing & Kin Keung Lai, 2016. "Impact of International Oil Price on Energy Conservation and Emission Reduction in China," Sustainability, MDPI, vol. 8(6), pages 1-17, May.
    6. Jurgen A. Doornik & David F. Hendry & Bent Nielsen, 1998. "Inference in Cointegrating Models: UK M1 Revisited," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 533-572, December.
    7. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    8. Sen, Amit, 2003. "On Unit-Root Tests When the Alternative Is a Trend-Break Stationary Process," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 174-184, January.
    9. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    10. Gregory C. Reinsel & Sung K. Ahn, 1992. "Vector Autoregressive Models With Unit Roots And Reduced Rank Structure:Estimation. Likelihood Ratio Test, And Forecasting," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(4), pages 353-375, July.
    11. Chinazaekpere Nwani, 2017. "Causal relationship between crude oil price, energy consumption and carbon dioxide (CO 2 ) emissions in Ecuador," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 41(3), pages 201-225, September.
    12. Osterwald-Lenum, Michael, 1992. "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 461-472, August.
    13. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    14. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    15. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    16. repec:bla:jecsur:v:12:y:1998:i:5:p:533-72 is not listed on IDEAS
    17. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    18. Darby, Michael R, 1982. "The Price of Oil and World Inflation and Recession," American Economic Review, American Economic Association, vol. 72(4), pages 738-751, September.
    19. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2013. "A wavelet decomposition approach to crude oil price and exchange rate dependence," Economic Modelling, Elsevier, vol. 32(C), pages 42-57.
    20. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    21. Akinboade, Oludele A. & Ziramba, Emmanuel & Kumo, Wolassa L., 2008. "The demand for gasoline in South Africa: An empirical analysis using co-integration techniques," Energy Economics, Elsevier, vol. 30(6), pages 3222-3229, November.
    22. Vahid, Farshid & Issler, Joao Victor, 2002. "The importance of common cyclical features in VAR analysis: a Monte-Carlo study," Journal of Econometrics, Elsevier, vol. 109(2), pages 341-363, August.
    23. Brown, Stephen P. A. & Yucel, Mine K., 2002. "Energy prices and aggregate economic activity: an interpretative survey," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 193-208.
    24. He, Kaijian & Tso, Geoffrey K.F. & Zou, Yingchao & Liu, Jia, 2018. "Crude oil risk forecasting: New evidence from multiscale analysis approach," Energy Economics, Elsevier, vol. 76(C), pages 574-583.
    25. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    26. Yufeng Chen & Guobin Huang & Lihua Ma, 2017. "Rockets and Feathers: The Asymmetric Effect between China’s Refined Oil Prices and International Crude Oil Prices," Sustainability, MDPI, vol. 9(3), pages 1-19, March.
    27. Leng Wong, Siang & Chia, Wai-Mun & Chang, Youngho, 2013. "Energy consumption and energy R&D in OECD: Perspectives from oil prices and economic growth," Energy Policy, Elsevier, vol. 62(C), pages 1581-1590.
    28. Zou, Gao Lu, 2012. "The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy," Energy Policy, Elsevier, vol. 47(C), pages 456-467.
    29. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    30. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries," Energy Economics, Elsevier, vol. 33(2), pages 236-248, March.
    31. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    32. Nguyen, Cuong & Bhatti, M. Ishaq & Komorníková, Magda & Komorník, Jozef, 2016. "Gold price and stock markets nexus under mixed-copulas," Economic Modelling, Elsevier, vol. 58(C), pages 283-292.
    33. Toda, Hiro Y, 1994. "Finite Sample Properties of Likelihood Ratio Tests for Cointegrating Ranks when Linear Trends are Present," The Review of Economics and Statistics, MIT Press, vol. 76(1), pages 66-79, February.
    34. Yu, Lean & Li, Jingjing & Tang, Ling & Wang, Shuai, 2015. "Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach," Energy Economics, Elsevier, vol. 51(C), pages 300-311.
    35. Cheung, Yin-Wong & Lai, Kon S, 1993. "Finite-Sample Sizes of Johansen's Likelihood Ration Tests for Conintegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 55(3), pages 313-328, August.
    36. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    37. John Baffes & Varun Kshirsagar, 2016. "Sources of volatility during four oil price crashes," Applied Economics Letters, Taylor & Francis Journals, vol. 23(6), pages 402-406, April.
    38. David F. Hendry & Katarina Juselius, 2001. "Explaining Cointegration Analysis: Part II," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-120.
    39. Rasche, Robert H. & Tatom, John A., 1981. "Energy price shocks, aggregate supply and monetary policy: The theory and the international evidence," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 14(1), pages 9-93, January.
    40. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    41. Johansen, Soren, 1992. "Testing weak exogeneity and the order of cointegration in UK money demand data," Journal of Policy Modeling, Elsevier, vol. 14(3), pages 313-334, June.
    42. Hamilton, James D., 1988. "Are the macroeconomic effects of oil-price changes symmetric? : A comment," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 28(1), pages 369-378, January.
    43. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    44. Grayham E. Mizon & David F. Hendry, 1998. "Exogeneity, causality, and co-breaking in economic policy analysis of a small econometric model of money in the UK," Empirical Economics, Springer, vol. 23(3), pages 267-294.
    45. Gonzalo, Jesus, 1994. "Five alternative methods of estimating long-run equilibrium relationships," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 203-233.
    46. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    47. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    48. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    49. K. W. Chau & Gaolu Zou, 2018. "Energy Prices, Real Estate Sales and Industrial Output in China," Energies, MDPI, vol. 11(7), pages 1-15, July.
    50. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2017. "The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective," Energy Economics, Elsevier, vol. 67(C), pages 98-110.
    51. Shi, Xunpeng & Sun, Sizhong, 2017. "Energy price, regulatory price distortion and economic growth: A case study of China," Energy Economics, Elsevier, vol. 63(C), pages 261-271.
    52. Zhang, Chuanguo & Xu, Jiao, 2012. "Retesting the causality between energy consumption and GDP in China: Evidence from sectoral and regional analyses using dynamic panel data," Energy Economics, Elsevier, vol. 34(6), pages 1782-1789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartosz Łamasz & Natalia Iwaszczuk, 2020. "The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: The Case of WTI Crude Oil Market," Energies, MDPI, vol. 13(20), pages 1-23, October.
    2. Jiaying Peng & Zhenghui Li & Benjamin M. Drakeford, 2020. "Dynamic Characteristics of Crude Oil Price Fluctuation—From the Perspective of Crude Oil Price Influence Mechanism," Energies, MDPI, vol. 13(17), pages 1-19, August.
    3. Bilgili, Faik & Kassouri, Yacouba & Kuşkaya, Sevda & Majok Garang, Aweng Peter, 2024. "The dynamic nexus of oil price fluctuations and banking sector in China: A continuous wavelet analysis," Resources Policy, Elsevier, vol. 88(C).
    4. Lin Liang & Lei Jin & Gurpreet Singh Selopal & Federico Rosei, 2023. "Peace Engineering in Practice: China’s Energy Diplomacy Strategy and Its Global Implications," Sustainability, MDPI, vol. 15(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaolu Zou & K. W. Chau, 2019. "Long- and Short-Run Effects of Fuel Prices on Freight Transportation Volumes in Shanghai," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    2. K. W. Chau & Gaolu Zou, 2018. "Energy Prices, Real Estate Sales and Industrial Output in China," Energies, MDPI, vol. 11(7), pages 1-15, July.
    3. Zou, Gao Lu, 2012. "The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy," Energy Policy, Elsevier, vol. 47(C), pages 456-467.
    4. Gao Lu Zou & Kwong Wing Chau, 2015. "Determinants and Sustainability of House Prices: The Case of Shanghai, China," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    5. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    6. Narayan, Paresh Kumar & Narayan, Seema & Smyth, Russell, 2011. "Energy consumption at business cycle horizons: The case of the United States," Energy Economics, Elsevier, vol. 33(2), pages 161-167, March.
    7. Papież, Monika & Śmiech, Sławomir, 2015. "Dynamic steam coal market integration: Evidence from rolling cointegration analysis," Energy Economics, Elsevier, vol. 51(C), pages 510-520.
    8. Chien-Chiang Lee & Chun-Ping Chang, 2006. "The Long-Run Relationship Between Defence Expenditures And Gdp In Taiwan," Defence and Peace Economics, Taylor & Francis Journals, vol. 17(4), pages 361-385.
    9. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
    10. Acaravici, Ali, 2010. "Structural Breaks, Electricity Consumption and Economic Growth: Evidence from Turkey," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 140-154, July.
    11. Wu, Jyh-lin, 1998. "Are budget deficits "too large"?: The evidence from Taiwan," Journal of Asian Economics, Elsevier, vol. 9(3), pages 519-528.
    12. Darne, Olivier & Diebolt, Claude, 2004. "Unit roots and infrequent large shocks: new international evidence on output," Journal of Monetary Economics, Elsevier, vol. 51(7), pages 1449-1465, October.
    13. Chien-Chung Nieh & Hwey-Yun Yau & Ken Hung & Hong-Kou Ou & Shine Hung, 2013. "Cointegration and causal relationships among steel prices of Mainland China, Taiwan, and USA in the presence of multiple structural changes," Empirical Economics, Springer, vol. 44(2), pages 545-561, April.
    14. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
    15. Olivier Darné & Claude Diebolt, 2006. "Chocs temporaires et permanents dans le PIB de la France, du Royaume-Uni et des États-Unis," Revue d'économie politique, Dalloz, vol. 116(1), pages 65-78.
    16. John Dawson & John Seater, 2013. "Federal regulation and aggregate economic growth," Journal of Economic Growth, Springer, vol. 18(2), pages 137-177, June.
    17. Kühl, Michael, 2010. "Bivariate cointegration of major exchange rates, cross-market efficiency and the introduction of the Euro," Journal of Economics and Business, Elsevier, vol. 62(1), pages 1-19, January.
    18. Roberto Martínez-Espiñeira, 2007. "An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques," Journal of Applied Economics, Taylor & Francis Journals, vol. 10(1), pages 161-184, May.
    19. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    20. Atanas Christev, 2005. "The Hyperinflation Model of Money Demand (or Cagan Revisited): Some New Empirical Evidence from the 1990s," CERT Discussion Papers 0507, Centre for Economic Reform and Transformation, Heriot Watt University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3891-:d:391968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.