IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v193y2025ics136655452400423x.html
   My bibliography  Save this article

Inhibitors in ridesharing firms from developing Nations: A novel Integrated MCDM – Text Mining approach using Large-Scale data

Author

Listed:
  • Koley, Souradeep
  • Kumar Barua, Mukesh
  • Bisi, Arnab

Abstract

Our study identifies major impediments (or inhibitors) faced by Transportation Network Companies (TNCs) such as Uber, Lyft, and Ola within the context of developing nations. While existing studies on TNCs centered on passenger adoption and drivers’ perspectives, we quantitively assess the inhibitors and provide mitigation strategies. To achieve this, we use machine learning methods, particularly Latent Dirichlet Allocation (LDA) and emotion analysis on large-scale public data, to understand and classify consumer perspectives on TNCs into multiple themes. The latent theme helps experts of different ridesharing firms get a holistic perspective of riders on TNCs, assisting them in identifying the inhibitors. Using the Delphi method, we were able to achieve a consensus in identifying six primary and nineteen secondary inhibitors. We rank the primary inhibitors based on the optimal weight obtained using the Bayesian Best Worst Method. To minimize uncertainty and imprecise judgment in decision-making, we combine the grey theory with the Decision-Making Trial and Evaluation Laboratory (Grey-DEMATEL) to identify the interrelationships among the secondary inhibitors. Moreover, we perform sensitivity analysis to show the robustness of our solution. Contrary to conventional perception, our findings indicate that the government is the primary inhibitor for TNCs due to current policy and discrepancies in regulations between central and states. Additionally, our studies introduce five new inhibitors to the literature, which include drivers inciting trip cancellation to avoid commission, internal coalition of drivers, commission miscomprehension among drivers, limited infrastructure for cashless operation, and internal conflict and dysfunction within the department. The findings from large-scale data analysis, coupled with group decision-making, offer various managerial implications that can guide future managers and policymakers to enhance the operational efficiency of firms.

Suggested Citation

  • Koley, Souradeep & Kumar Barua, Mukesh & Bisi, Arnab, 2025. "Inhibitors in ridesharing firms from developing Nations: A novel Integrated MCDM – Text Mining approach using Large-Scale data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:transe:v:193:y:2025:i:c:s136655452400423x
    DOI: 10.1016/j.tre.2024.103832
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452400423X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:193:y:2025:i:c:s136655452400423x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.