IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v162y2022icp236-252.html
   My bibliography  Save this article

Synthetic control methods for policy analysis: Evaluating the effect of the European Emission Trading System on aviation supply

Author

Listed:
  • Kang, Yicheng
  • Liao, Sha
  • Jiang, Changmin
  • D’Alfonso, Tiziana

Abstract

In this paper, we provide a novel application of synthetic control methods by offering two major modifications to the existing methodological framework. We provide the first complete ex-post evaluation of the causal impact of carbon pricing on aviation supply, expressed in terms of airline output (i.e., number of seats supplied at the airline-route level). We investigated the policy change in the European Union Emission Trading System (EU ETS), the first large greenhouse gas emissions trading scheme in the world. We distinguish between low-cost, regional and full service airlines, short and medium/long-haul routes, routes towards (or from) hub airports versus non-hub airports, monopolistic versus non-monopolistic routes. The analysis shows that the EU ETS does not have a substantial impact on the average aircraft size, while it has caused a reduction of total airline seat capacity and flight frequency, with the percentage of airline seat capacity reduction reaching above 20% at its peak. The overall effect of the policy has a remarkable impact on low-cost and regional airlines, short-haul routes, spoke–spoke markets and monopolistic routes. Our results are the first empirical confirmation to the theoretical prediction in the aviation literature that emission charges will reduce flight frequency and increase load factors while having no effect on aircraft size.

Suggested Citation

  • Kang, Yicheng & Liao, Sha & Jiang, Changmin & D’Alfonso, Tiziana, 2022. "Synthetic control methods for policy analysis: Evaluating the effect of the European Emission Trading System on aviation supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 236-252.
  • Handle: RePEc:eee:transa:v:162:y:2022:i:c:p:236-252
    DOI: 10.1016/j.tra.2022.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422001367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Wei & Mark Hansen, 2003. "Cost Economics of Aircraft Size," Journal of Transport Economics and Policy, University of Bath, vol. 37(2), pages 279-296, May.
    2. Brueckner, Jan K. & Lin, Ming Hsin, 2016. "Convenient flight connections vs. airport congestion: Modeling the ‘rolling hub’," International Journal of Industrial Organization, Elsevier, vol. 48(C), pages 118-142.
    3. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    4. David Card, 1990. "The Impact of the Mariel Boatlift on the Miami Labor Market," ILR Review, Cornell University, ILR School, vol. 43(2), pages 245-257, January.
    5. Amankwah-Amoah, Joseph, 2020. "Stepping Up and Stepping Out of COVID-19: New Challenges for Environmental Sustainability Policies in the Global Airline Industry," MPRA Paper 101491, University Library of Munich, Germany.
    6. Stefano F. Verde & Jordi Teixidó & Claudio Marcantonini & Xavier Labandeira, 2019. "Free allocation rules in the EU emissions trading system: what does the empirical literature show?," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 439-452, April.
    7. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    8. Marit Klemetsen & Knut Einar Rosendahl & Anja Lund Jakobsen, 2020. "The Impacts Of The Eu Ets On Norwegian Plants’ Environmental And Economic Performance," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-32, February.
    9. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    10. Albers, Sascha & Bühne, Jan-André & Peters, Heiko, 2009. "Will the EU-ETS instigate airline network reconfigurations?," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 1-6.
    11. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    12. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    13. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    14. Anger, Annela, 2010. "Including aviation in the European emissions trading scheme: Impacts on the industry, CO2 emissions and macroeconomic activity in the EU," Journal of Air Transport Management, Elsevier, vol. 16(2), pages 100-105.
    15. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    16. Sven Maertens & Wolfgang Grimme & Janina Scheelhaase & Martin Jung, 2019. "Options to Continue the EU ETS for Aviation in a CORSIA-World," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    17. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    18. Yahua Zhang & Faqin Lin & Anming Zhang, 2018. "Gravity models in air transport research: a survey and an application," Chapters, in: Bruce A. Blonigen & Wesley W. Wilson (ed.), Handbook of International Trade and Transportation, chapter 4, pages 141-158, Edward Elgar Publishing.
    19. Wei, Wenbin & Hansen, Mark, 2007. "Airlines' competition in aircraft size and service frequency in duopoly markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 409-424, July.
    20. Fageda, Xavier & Flores-Fillol, Ricardo, 2016. "How do airlines react to airport congestion? The role of networks," Regional Science and Urban Economics, Elsevier, vol. 56(C), pages 73-81.
    21. Scotti, Davide & Volta, Nicola, 2018. "Price asymmetries in European airfares," Economics of Transportation, Elsevier, vol. 14(C), pages 42-52.
    22. Richard S.J. Tol, 2006. "The Impact Of A Carbon Tax On International Tourism," Working Papers FNU-120, Research unit Sustainability and Global Change, Hamburg University, revised Nov 2006.
    23. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    24. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    25. Meredith Fowlie & Stephen P. Holland & Erin T. Mansur, 2012. "What Do Emissions Markets Deliver and to Whom? Evidence from Southern California's NOx Trading Program," American Economic Review, American Economic Association, vol. 102(2), pages 965-993, April.
    26. Scheelhaase, Janina & Maertens, Sven & Grimme, Wolfgang & Jung, Martin, 2018. "EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport's CO2 emissions by market-based measures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 55-62.
    27. Gillen, David & Hasheminia, Hamed & Jiang, Changmin, 2015. "Strategic considerations behind the network–regional airline tie ups – A theoretical and empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 93-111.
    28. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    29. Morrell, Peter, 2007. "An evaluation of possible EU air transport emissions trading scheme allocation methods," Energy Policy, Elsevier, vol. 35(11), pages 5562-5570, November.
    30. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    31. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2011. "Synth: An R Package for Synthetic Control Methods in Comparative Case Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i13).
    32. Fageda, Xavier & Flores-Fillol, Ricardo, 2015. "A note on optimal airline networks under airport congestion," Economics Letters, Elsevier, vol. 128(C), pages 90-94.
    33. Stiglitz, Joseph E., 2019. "Addressing climate change through price and non-price interventions," European Economic Review, Elsevier, vol. 119(C), pages 594-612.
    34. Fageda, Xavier & Teixidó, Jordi J., 2022. "Pricing carbon in the aviation sector: Evidence from the European emissions trading system," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    35. Flora, Maria & Vargiolu, Tiziano, 2020. "Price dynamics in the European Union Emissions Trading System and evaluation of its ability to boost emission-related investment decisions," European Journal of Operational Research, Elsevier, vol. 280(1), pages 383-394.
    36. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
    37. Vespermann, Jan & Wald, Andreas, 2011. "Much Ado about Nothing? – An analysis of economic impacts and ecologic effects of the EU-emission trading scheme in the aviation industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1066-1076.
    38. Liao, Weijun & Fan, Ying & Wang, Chunan, 2022. "How does COVID-19 affect the implementation of CORSIA?," Journal of Air Transport Management, Elsevier, vol. 99(C).
    39. Wadud, Zia, 2015. "Imperfect reversibility of air transport demand: Effects of air fare, fuel prices and price transmission," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 16-26.
    40. Dou, Guowei & Choi, Tsan-Ming, 2021. "Does implementing trade-in and green technology together benefit the environment?," European Journal of Operational Research, Elsevier, vol. 295(2), pages 517-533.
    41. Zheng, Shiyuan & Ge, Ying-En & Fu, Xiaowen & Jiang, Changmin, 2019. "Voluntary carbon offset and airline alliance," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 110-126.
    42. Malina, Robert & McConnachie, Dominic & Winchester, Niven & Wollersheim, Christoph & Paltsev, Sergey & Waitz, Ian A., 2012. "The impact of the European Union Emissions Trading Scheme on US aviation," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 36-41.
    43. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    44. Scheelhaase, Janina D. & Grimme, Wolfgang G., 2007. "Emissions trading for international aviation—an estimation of the economic impact on selected European airlines," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 253-263.
    45. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    46. Deeney, Peter & Cummins, Mark & Heintz, Katharina & Pryce, Mary T., 2021. "A real options based decision support tool for R&D investment: Application to CO2 recycling technology," European Journal of Operational Research, Elsevier, vol. 289(2), pages 696-711.
    47. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    48. Seristö, Hannu & Vepsäläinen, Ari P.J., 1997. "Airline cost drivers: cost implications of fleet, routes, and personnel policies," Journal of Air Transport Management, Elsevier, vol. 3(1), pages 11-22.
    49. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    50. Derigs, Ulrich & Illing, Stefan, 2013. "Does EU ETS instigate Air Cargo network reconfiguration? A model-based analysis," European Journal of Operational Research, Elsevier, vol. 225(3), pages 518-527.
    51. Hu, Rong & Xiao, Yi-bin & Jiang, Changmin, 2018. "Jet fuel hedging, operational fuel efficiency improvement and carbon tax," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 103-123.
    52. Givoni, Moshe & Rietveld, Piet, 2010. "The environmental implications of airlines' choice of aircraft size," Journal of Air Transport Management, Elsevier, vol. 16(3), pages 159-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaggero, Alberto A. & Luttmann, Alexander, 2023. "The determinants of hidden-city ticketing: Competition, hub-and-spoke networks, and advance-purchase requirements," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Hamdan, Sadeque & Jouini, Oualid & Cheaitou, Ali & Jemai, Zied & Granberg, Tobias Andersson & Josefsson, Billy, 2022. "Air traffic flow management under emission policies: Analyzing the impact of sustainable aviation fuel and different carbon prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 14-40.
    3. Cai, Yifei & Zhang, Yahua & Wu, Yanrui & Chang, Tsangyao, 2024. "Airline stock market performance and political relations: A cross-quantilogram analysis of Chinese and US carriers," Transport Policy, Elsevier, vol. 155(C), pages 124-149.
    4. Bernardo, Valeria & Fageda, Xavier & Teixidó, Jordi, 2024. "Flight ticket taxes in Europe: Environmental and economic impact," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    3. Liao, Weijun & Wang, Chunan, 2021. "Airline emissions charges and airline networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    4. Fageda, Xavier & Teixidó, Jordi J., 2022. "Pricing carbon in the aviation sector: Evidence from the European emissions trading system," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    5. Oesingmann, Katrin, 2022. "The effect of the European Emissions Trading System (EU ETS) on aviation demand: An empirical comparison with the impact of ticket taxes," Energy Policy, Elsevier, vol. 160(C).
    6. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    7. Michał Marcin Kobierecki & Michał Pierzgalski, 2022. "Sports Mega-Events and Economic Growth: A Synthetic Control Approach," Journal of Sports Economics, , vol. 23(5), pages 567-597, June.
    8. Bai, Jushan & Wang, Peng, 2024. "Causal inference using factor models," MPRA Paper 120585, University Library of Munich, Germany.
    9. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    10. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    11. Miyoshi, Chikage, 2014. "Assessing the equity impact of the European Union Emission Trading Scheme on an African airline," Transport Policy, Elsevier, vol. 33(C), pages 56-64.
    12. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    13. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    14. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    15. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    16. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    17. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
    18. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    19. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    20. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:162:y:2022:i:c:p:236-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.