IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v81y2023ics0301420723000016.html
   My bibliography  Save this article

Does emission trading system reduce mining cities’ pollution emissions? A quasi-natural experiment based on Chinese prefecture-level cities

Author

Listed:
  • Shen, Jun
  • Tang, Pengcheng
  • Zeng, Hao
  • Cheng, Jinhua
  • Liu, Xiuli

Abstract

The emissions trading system is the most crucial measure taken by the Chinese government to control environmental pollution, but its actual effects on mining cities remain unknown. Therefore, the data of Chinese prefecture-level cities from 2003 to 2018 were used to evaluate the actual emission reduction effects of the emissions trading system in mining cities through the difference-in-difference method. The empirical results provide convincing evidence: (1) The emissions trading system of Chinese government has reduced pollution emissions in mining cities by 22%, and achieved the policy effects of emission reduction. (2) Compared with the mining cities in western and eastern regions, the mining cities in the central region have shown better policy effects of emission reduction. At the same time, the emissions trading system can promote the pollutant emissions reduction in mining cities in old industrial bases, growing mining cities and regenerative mining cities. (3) Further analysis revealed that the emissions trading system mainly achieved pollutant emissions reduction in mining cities through marketization and technological innovation (especially the innovation of green technology). Carbon market policies that adapt to local conditions should be implemented by the Chinese government to enhance the level of marketization and technological innovation, and maximize the policy effect of the emissions trading system.

Suggested Citation

  • Shen, Jun & Tang, Pengcheng & Zeng, Hao & Cheng, Jinhua & Liu, Xiuli, 2023. "Does emission trading system reduce mining cities’ pollution emissions? A quasi-natural experiment based on Chinese prefecture-level cities," Resources Policy, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000016
    DOI: 10.1016/j.resourpol.2023.103293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723000016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petia Topalova, 2010. "Factor Immobility and Regional Impacts of Trade Liberalization: Evidence on Poverty from India," American Economic Journal: Applied Economics, American Economic Association, vol. 2(4), pages 1-41, October.
    2. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    3. Zhifu Mi & Jiali Zheng & Jing Meng & Jiamin Ou & Klaus Hubacek & Zhu Liu & D’Maris Coffman & Nicholas Stern & Sai Liang & Yi-Ming Wei, 2020. "Economic development and converging household carbon footprints in China," Nature Sustainability, Nature, vol. 3(7), pages 529-537, July.
    4. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    5. Ren, Siyu & Hao, Yu & Wu, Haitao, 2022. "The role of outward foreign direct investment (OFDI) on green total factor energy efficiency: Does institutional quality matters? Evidence from China," Resources Policy, Elsevier, vol. 76(C).
    6. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    7. Stavins Robert N., 1995. "Transaction Costs and Tradeable Permits," Journal of Environmental Economics and Management, Elsevier, vol. 29(2), pages 133-148, September.
    8. Yu, Jing & Zhang, Zhongjun & Zhou, Yifan, 2008. "The sustainability of China's major mining cities," Resources Policy, Elsevier, vol. 33(1), pages 12-22, March.
    9. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    10. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    11. Chen, Yvonne Jie & Li, Pei & Lu, Yi, 2018. "Career concerns and multitasking local bureaucrats: Evidence of a target-based performance evaluation system in China," Journal of Development Economics, Elsevier, vol. 133(C), pages 84-101.
    12. Yan, Yaxue & Zhang, Xiaoling & Zhang, Jihong & Li, Kai, 2020. "Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story," Energy Policy, Elsevier, vol. 138(C).
    13. Zhang, Shengling & Wang, Yao & Hao, Yu & Liu, Zhiwei, 2021. "Shooting two hawks with one arrow: Could China's emission trading scheme promote green development efficiency and regional carbon equality?," Energy Economics, Elsevier, vol. 101(C).
    14. Cheng, Beibei & Dai, Hancheng & Wang, Peng & Xie, Yang & Chen, Li & Zhao, Daiqing & Masui, Toshihiko, 2016. "Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China," Energy Policy, Elsevier, vol. 88(C), pages 515-527.
    15. Joachim Schleich & Regina Betz, 2004. "EU emissions trading and transaction costs for small and medium sized companies," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 39(3), pages 121-123, May.
    16. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    17. Jiao, Wenting & Zhang, Xiaosen & Li, Changhong & Guo, Jiaqi, 2021. "Sustainable transition of mining cities in China: Literature review and policy analysis," Resources Policy, Elsevier, vol. 74(C).
    18. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    19. Chen, Xiaoqi & Li, Weiping & Chen, Zifang & Huang, Jiashun, 2022. "Environmental regulation and real earnings management—Evidence from the SO2 emissions trading system in China," Finance Research Letters, Elsevier, vol. 46(PB).
    20. Tang, Pengcheng & Yang, Shuxiang & Yang, Shuwang, 2020. "How to design corporate governance structures to enhance corporate social responsibility in China's mining state-owned enterprises?," Resources Policy, Elsevier, vol. 66(C).
    21. Yifei Zhang & Sheng Li & Fang Zhang, 2020. "Does an Emissions Trading Policy Improve Environmental Efficiency? Evidence from China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    22. Mitsutsugu Hamamoto, 2021. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the adoption of low-carbon technology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 501-515, July.
    23. Hui Situ & Carol Tilt, 2018. "Mandatory? Voluntary? A Discussion of Corporate Environmental Disclosure Requirements in China," Social and Environmental Accountability Journal, Taylor & Francis Journals, vol. 38(2), pages 131-144, May.
    24. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    25. Rongbo Zhang & Changbiao Zhong, 2022. "Can the Adjustment and Renovation Policies of Old Industrial Cities Reduce Urban Carbon Emissions?—Empirical Analysis Based on Quasi-Natural Experiments," IJERPH, MDPI, vol. 19(11), pages 1-22, May.
    26. Tang, Pengcheng & Jiang, Qisheng & Mi, Lili, 2021. "One-vote veto: The threshold effect of environmental pollution in China's economic promotion tournament," Ecological Economics, Elsevier, vol. 185(C).
    27. Zhongyu Ma & Songfeng Cai & Weifeng Ye & Alun Gu, 2019. "Linking Emissions Trading Schemes: Economic Valuation of a Joint China–Japan–Korea Carbon Market," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    28. Liu, Xiaoyu & Duan, Zhiyuan & Shan, Yuli & Duan, Haiyan & Wang, Shuo & Song, Junnian & Wang, Xian'en, 2019. "Low-carbon developments in Northeast China: Evidence from cities," Applied Energy, Elsevier, vol. 236(C), pages 1019-1033.
    29. Wang, Wei & Zhang, Yue-Jun, 2022. "Does China's carbon emissions trading scheme affect the market power of high-carbon enterprises?," Energy Economics, Elsevier, vol. 108(C).
    30. Finn Førsund & Eric NÆvdal, 1998. "Efficiency Gains Under Exchange-Rate Emission Trading," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(4), pages 403-423, December.
    31. Guojun He & Yuhang Pan & Takanao Tanaka, 2020. "The short-term impacts of COVID-19 lockdown on urban air pollution in China," Nature Sustainability, Nature, vol. 3(12), pages 1005-1011, December.
    32. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    33. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Xiong, Weiwei, 2016. "Research on diversity of mineral resources carrying capacity in Chinese mining cities," Resources Policy, Elsevier, vol. 47(C), pages 108-114.
    34. Dongya Li & Maosheng Duan & Zhe Deng & Haijun Zhang, 2021. "Assessment of the performance of pilot carbon emissions trading systems in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 593-612, July.
    35. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    36. Qian, Xiangyan & Wang, Di & Wang, Jia & Chen, Sai, 2021. "Resource curse, environmental regulation and transformation of coal-mining cities in China," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    2. Yanhong Feng & Shuanglian Chen & Pierre Failler, 2020. "Productivity Effect Evaluation on Market-Type Environmental Regulation: A Case Study of SO 2 Emission Trading Pilot in China," IJERPH, MDPI, vol. 17(21), pages 1-27, October.
    3. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    4. Ren, Shenggang & Yang, Xuanyu & Hu, Yucai & Chevallier, Julien, 2022. "Emission trading, induced innovation and firm performance," Energy Economics, Elsevier, vol. 112(C).
    5. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    6. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    7. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).
    8. Chen, Chunhua & Jiang, Dequan & Lan, Meng & Li, Weiping & Ye, Ling, 2022. "Does environmental regulation affect labor investment Efficiency?Evidence from a quasi-natural experiment in China," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 82-95.
    9. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    10. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    11. Maogang Tang & Silu Cheng & Wenqing Guo & Weibiao Ma & Fengxia Hu, 2023. "Relationship between carbon emission trading schemes and companies’ total factor productivity: evidence from listed companies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11735-11767, October.
    12. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    13. Sheng Xu & Wenran Pan & Demei Wen, 2023. "Do Carbon Emission Trading Schemes Promote the Green Transition of Enterprises? Evidence from China," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    14. Sadayuki, Taisuke & Arimura, Toshi H., 2021. "Do regional emission trading schemes lead to carbon leakage within firms? Evidence from Japan," Energy Economics, Elsevier, vol. 104(C).
    15. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    16. Zhang, Shengling & Wu, Zihao & He, Yinan & Hao, Yu, 2022. "How does the green credit policy affect the technological innovation of enterprises? Evidence from China," Energy Economics, Elsevier, vol. 113(C).
    17. LU Guanyu & TANAKA Kenta & ARIMURA Toshi H., 2023. "The Impacts of the Tokyo and Saitama ETSs on the Energy Efficiency Performance of Manufacturing Facilities," Discussion papers 23007, Research Institute of Economy, Trade and Industry (RIETI).
    18. Zeyu Xie & Mian Yang & Fei Xu, 2023. "Carbon emission trading system and stock price crash risk of heavily polluting listed companies in China: based on analyst coverage mechanism," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-30, December.
    19. Xie, Yu & Wu, Desheng & Li, Xiaoyan & Tian, Suhua, 2023. "How does environmental regulation affect productivity? The role of corporate compliance strategies," Economic Modelling, Elsevier, vol. 126(C).
    20. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.