IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v85y2014icp70-83.html
   My bibliography  Save this article

On the limit perfect public equilibrium payoff set in repeated and stochastic games

Author

Listed:
  • Hörner, Johannes
  • Takahashi, Satoru
  • Vieille, Nicolas

Abstract

This paper provides a dual characterization of the existing ones for the limit set of perfect public equilibrium payoffs in a class of finite stochastic games (in particular, repeated games) as the discount factor tends to one. As a first corollary, the folk theorems of Fudenberg et al. (1994), Kandori and Matsushima (1998) and Hörner et al. (2011) obtain. As a second corollary, it is shown that this limit set of payoffs is a convex polytope when attention is restricted to perfect public equilibria in pure strategies. This result fails for mixed strategies, even when attention is restricted to two-player repeated games.

Suggested Citation

  • Hörner, Johannes & Takahashi, Satoru & Vieille, Nicolas, 2014. "On the limit perfect public equilibrium payoff set in repeated and stochastic games," Games and Economic Behavior, Elsevier, vol. 85(C), pages 70-83.
  • Handle: RePEc:eee:gamebe:v:85:y:2014:i:c:p:70-83
    DOI: 10.1016/j.geb.2013.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825614000116
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Hörner & Stefano Lovo, 2009. "Belief-Free Equilibria in Games With Incomplete Information," Econometrica, Econometric Society, vol. 77(2), pages 453-487, March.
    2. Hörner, Johannes & Lovo, Stefano & Tomala, Tristan, 2011. "Belief-free equilibria in games with incomplete information: Characterization and existence," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1770-1795, September.
    3. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "The folk theorem for irreducible stochastic games with imperfect public monitoring," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1664-1683, July.
    4. Tristan Tomala, 1998. "Pure equilibria of repeated games with public observation," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 93-109.
    5. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    6. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367, World Scientific Publishing Co. Pte. Ltd..
    7. Drew Fudenberg & David K. Levine, 2008. "Efficiency and Observability with Long-Run and Short-Run Players," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 13, pages 275-307, World Scientific Publishing Co. Pte. Ltd..
    8. David Rahman & Ichiro Obara, 2010. "Mediated Partnerships," Econometrica, Econometric Society, vol. 78(1), pages 285-308, January.
    9. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-1063, September.
    10. Johannes Hörner & Takuo Sugaya & Satoru Takahashi & Nicolas Vieille, 2011. "Recursive Methods in Discounted Stochastic Games: An Algorithm for δ→ 1 and a Folk Theorem," Econometrica, Econometric Society, vol. 79(4), pages 1277-1318, July.
    11. repec:dau:papers:123456789/9834 is not listed on IDEAS
    12. repec:dau:papers:123456789/6102 is not listed on IDEAS
    13. Tomala, Tristan, 2009. "Perfect communication equilibria in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 67(2), pages 682-694, November.
    14. Abreu, Dilip & Sannikov, Yuliy, 2014. "An algorithm for two-player repeated games with perfect monitoring," Theoretical Economics, Econometric Society, vol. 9(2), May.
    15. Yuichi Yamamoto, 2010. "The use of public randomization in discounted repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 431-443, July.
    16. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
    17. Drew Fudenberg & Yuichi Yamamoto, 2010. "Repeated Games Where the Payoffs and Monitoring Structure Are Unknown," Econometrica, Econometric Society, vol. 78(5), pages 1673-1710, September.
    18. A. J. Hoffman & R. M. Karp, 1966. "On Nonterminating Stochastic Games," Management Science, INFORMS, vol. 12(5), pages 359-370, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laclau, Marie & Tomala, Tristan, 2017. "Repeated games with public deterministic monitoring," Journal of Economic Theory, Elsevier, vol. 169(C), pages 400-424.
    2. Johannes Hörner & Satoru Takahashi & Nicolas Vieille, 2015. "Truthful Equilibria in Dynamic Bayesian Games," Econometrica, Econometric Society, vol. 83(5), pages 1795-1848, September.
    3. Marie Laclau & Tristan Tomala, 2016. "Repeated games with public information revisited," PSE Working Papers hal-01285326, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Horner & Satoru Takahashi & Nicolas Vieille, 2012. "On the Limit Equilibrium Payoff Set in Repeated and Stochastic Games," Cowles Foundation Discussion Papers 1848, Cowles Foundation for Research in Economics, Yale University.
    2. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "Learning from private information in noisy repeated games," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1733-1769, September.
    3. Yuichi Yamamoto, 2014. "We Can Cooperate Even When the Monitoring Structure Will Never Be Known," PIER Working Paper Archive 17-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 08 Apr 2017.
    4. Hörner, Johannes & Takahashi, Satoru, 2016. "How fast do equilibrium payoff sets converge in repeated games?," Journal of Economic Theory, Elsevier, vol. 165(C), pages 332-359.
    5. Tristan Tomala, 2013. "Belief-Free Communication Equilibria in Repeated Games," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 617-637, November.
    6. Yuichi Yamamoto, 2012. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 12-044, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. Hino, Yoshifumi, 2019. "An efficiency result in a repeated prisoner’s dilemma game under costly observation with nonpublic randomization," Mathematical Social Sciences, Elsevier, vol. 101(C), pages 47-53.
    8. Fudenberg, Drew & Ishii, Yuhta & Kominers, Scott Duke, 2014. "Delayed-response strategies in repeated games with observation lags," Journal of Economic Theory, Elsevier, vol. 150(C), pages 487-514.
    9. Laclau, M., 2014. "Communication in repeated network games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 87(C), pages 136-160.
    10. Laclau, Marie & Tomala, Tristan, 2017. "Repeated games with public deterministic monitoring," Journal of Economic Theory, Elsevier, vol. 169(C), pages 400-424.
    11. Yuichi Yamamoto, 2013. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 13-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Tomala, Tristan, 2009. "Perfect communication equilibria in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 67(2), pages 682-694, November.
    13. Takuo Sugaya & Yuichi Yamamoto, 2019. "Common Learning and Cooperation in Repeated Games," PIER Working Paper Archive 19-008, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    14. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "The folk theorem for irreducible stochastic games with imperfect public monitoring," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1664-1683, July.
    15. Jérôme Renault & Tristan Tomala, 2011. "General Properties of Long-Run Supergames," Dynamic Games and Applications, Springer, vol. 1(2), pages 319-350, June.
    16. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367, World Scientific Publishing Co. Pte. Ltd..
    17. Miyagawa, Eiichi & Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2008. "The folk theorem for repeated games with observation costs," Journal of Economic Theory, Elsevier, vol. 139(1), pages 192-221, March.
    18. Marie Laclau & Tristan Tomala, 2016. "Repeated games with public information revisited," PSE Working Papers hal-01285326, HAL.
    19. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    20. Du, Chuang, 2012. "Solving payoff sets of perfect public equilibria: an example," MPRA Paper 38622, University Library of Munich, Germany.

    More about this item

    Keywords

    Stochastic games; Repeated games; Folk theorem;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:85:y:2014:i:c:p:70-83. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.