IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Finitely repeated games with semi-standard monitoring

  • Contou-Carrère, Pauline
  • Tomala, Tristan
Registered author(s):

    Abstract This paper studies finitely repeated games with semi-standard monitoring played in pure strategies. In these games, each player's action set is endowed with a partition, and the equivalence classes of the actions played are publicly observed. We characterize the limit set of equilibrium payoffs as the duration of the game increases.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6VBY-51JF89H-2/2/374a70a743da5ca8b2a5b2c379e375c7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Mathematical Economics.

    Volume (Year): 47 (2011)
    Issue (Month): 1 (January)
    Pages: 14-21

    as
    in new window

    Handle: RePEc:eee:mateco:v:47:y:2011:i:1:p:14-21
    Contact details of provider: Web page: http://www.elsevier.com/locate/jmateco

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Mailath George J. & Matthews Steven A. & Sekiguchi Tadashi, 2002. "Private Strategies in Finitely Repeated Games with Imperfect Public Monitoring," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 2(1), pages 1-23, June.
    2. Sekiguchi, Tadashi, 2001. "A negative result in finitely repeated games with product monitoring," Economics Letters, Elsevier, vol. 74(1), pages 67-70, December.
    3. Fudenberg, D. & Levine, D.K. & Maskin, E., 1989. "The Folk Theorem With Inperfect Public Information," Working papers 523, Massachusetts Institute of Technology (MIT), Department of Economics.
    4. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2004. "Perfect Public Equilibrium When Players Are Patient," Harvard Institute of Economic Research Working Papers 2051, Harvard - Institute of Economic Research.
    5. Fudenberg Drew & Levine David K., 1994. "Efficiency and Observability with Long-Run and Short-Run Players," Journal of Economic Theory, Elsevier, vol. 62(1), pages 103-135, February.
    6. Renault, Jérôme & Scarlatti, Sergio & Scarsini, Marco, 2008. "Discounted and finitely repeated minority games with public signals," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 44-74, July.
    7. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796, March.
    8. Lehrer, E, 1989. "Lower Equilibrium Payoffs in Two-Player Repeated Games with Non-observable Actions," International Journal of Game Theory, Springer, vol. 18(1), pages 57-89.
    9. Gonzalez-Diaz, Julio, 2006. "Finitely repeated games: A generalized Nash folk theorem," Games and Economic Behavior, Elsevier, vol. 55(1), pages 100-111, April.
    10. Lehrer, E, 1990. "Nash Equilibria of n-Player Repeated Games with Semi-standard Information," International Journal of Game Theory, Springer, vol. 19(2), pages 191-217.
    11. Renault, Jerome & Tomala, Tristan, 2004. "Communication equilibrium payoffs in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 49(2), pages 313-344, November.
    12. Tristan Tomala, 1998. "Pure equilibria of repeated games with public observation," International Journal of Game Theory, Springer, vol. 27(1), pages 93-109.
    13. Smith, L., 1993. "Necessary and Sufficient Conditions for the Perfect Finite Horizon Folk Theorem," Working papers 93-6, Massachusetts Institute of Technology (MIT), Department of Economics.
    14. Benoit, Jean-Pierre & Krishna, Vijay, 1985. "Finitely Repeated Games," Econometrica, Econometric Society, vol. 53(4), pages 905-22, July.
    15. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-54, May.
    16. Gossner, Olivier, 1995. "The Folk Theorem for Finitely Repeated Games with Mixed Strategies," International Journal of Game Theory, Springer, vol. 24(1), pages 95-107.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:47:y:2011:i:1:p:14-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.