IDEAS home Printed from
   My bibliography  Save this article

Repeated games with local monitoring and private communication


  • Laclau, M.


I consider repeated games with local monitoring: each player observes his neighbors’ moves only. Hence, monitoring is private and imperfect. Communication is private: each player can send different (costless) messages to different players. The solution concept is perfect Bayesian equilibrium. I prove that a folk theorem holds if and only if each player has two neighbors. This extends the result of Ben-Porath and Kahneman (1996) to private communication, provided the existence of sequential equilibrium.

Suggested Citation

  • Laclau, M., 2013. "Repeated games with local monitoring and private communication," Economics Letters, Elsevier, vol. 120(2), pages 332-337.
  • Handle: RePEc:eee:ecolet:v:120:y:2013:i:2:p:332-337 DOI: 10.1016/j.econlet.2013.05.002

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fudenberg, Drew & Tirole, Jean, 1991. "Perfect Bayesian equilibrium and sequential equilibrium," Journal of Economic Theory, Elsevier, vol. 53(2), pages 236-260, April.
    2. Ben-Porath, Elchanan & Kahneman, Michael, 1996. "Communication in Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 70(2), pages 281-297, August.
    3. JÊrÆme Renault & Tristan Tomala, 1998. "Repeated proximity games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(4), pages 539-559.
    4. Sorin, Sylvain, 1992. "Repeated games with complete information," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 4, pages 71-107 Elsevier.
    5. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-554, May.
    6. Fudenberg, Drew & Levine, David K., 1991. "An approximate folk theorem with imperfect private information," Journal of Economic Theory, Elsevier, vol. 54(1), pages 26-47, June.
    7. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    8. Obara, Ichiro, 2009. "Folk theorem with communication," Journal of Economic Theory, Elsevier, vol. 144(1), pages 120-134, January.
    9. Fudenberg, Drew & Maskin, Eric, 1991. "On the dispensability of public randomization in discounted repeated games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 428-438, April.
    10. Roy Radner, 1986. "Repeated Partnership Games with Imperfect Monitoring and No Discounting," Review of Economic Studies, Oxford University Press, vol. 53(1), pages 43-57.
    11. Olivier Compte, 1998. "Communication in Repeated Games with Imperfect Private Monitoring," Econometrica, Econometric Society, vol. 66(3), pages 597-626, May.
    12. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marie Laclau, 2012. "Local Communication in Repeated Games with Local Monitoring," PSE Working Papers hal-01285070, HAL.
    2. repec:eee:gamebe:v:107:y:2018:i:c:p:220-237 is not listed on IDEAS

    More about this item


    Communication; Folk theorem; Imperfect private monitoring; Networks; Repeated games;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:120:y:2013:i:2:p:332-337. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.