IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v76y2012i2p571-581.html
   My bibliography  Save this article

A folk theorem for repeated games with unequal discounting

Author

Listed:
  • Chen, Bo
  • Takahashi, Satoru

Abstract

We introduce a “dynamic non-equivalent utilities” (DNEU) condition and the notion of dynamic player-specific punishments for a general repeated game with unequal discounting, both naturally generalizing the stationary counterparts in Abreu et al. (1994). We show that if the DNEU condition, i.e., no pair of players have equivalent utility functions in the repeated game, is satisfied, then any feasible and strictly sequentially individually rational payoff sequence allows dynamic player-specific punishments. Using this result, we prove a folk theorem for unequal discounting repeated games that satisfy the DNEU condition.

Suggested Citation

  • Chen, Bo & Takahashi, Satoru, 2012. "A folk theorem for repeated games with unequal discounting," Games and Economic Behavior, Elsevier, vol. 76(2), pages 571-581.
  • Handle: RePEc:eee:gamebe:v:76:y:2012:i:2:p:571-581
    DOI: 10.1016/j.geb.2012.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825612001170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2012.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzalez-Diaz, Julio, 2006. "Finitely repeated games: A generalized Nash folk theorem," Games and Economic Behavior, Elsevier, vol. 55(1), pages 100-111, April.
    2. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367, World Scientific Publishing Co. Pte. Ltd..
    3. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    4. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    5. Rubinstein, Ariel, 1979. "Equilibrium in supergames with the overtaking criterion," Journal of Economic Theory, Elsevier, vol. 21(1), pages 1-9, August.
    6. Fudenberg, Drew & Maskin, Eric, 1991. "On the dispensability of public randomization in discounted repeated games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 428-438, April.
    7. Smith, Lones, 1995. "Necessary and Sufficient Conditions for the Perfect Finite Horizon Folk Theorem," Econometrica, Econometric Society, vol. 63(2), pages 425-430, March.
    8. Salonen, Hannu & Vartiainen, Hannu, 2008. "Valuating payoff streams under unequal discount factors," Economics Letters, Elsevier, vol. 99(3), pages 595-598, June.
    9. Guéron, Yves & Lamadon, Thibaut & Thomas, Caroline D., 2011. "On the folk theorem with one-dimensional payoffs and different discount factors," Games and Economic Behavior, Elsevier, vol. 73(1), pages 287-295, September.
    10. Wen, Quan, 1994. "The "Folk Theorem" for Repeated Games with Complete Information," Econometrica, Econometric Society, vol. 62(4), pages 949-954, July.
    11. Ehud Lehrer & Ady Pauzner, 1999. "Repeated Games with Differential Time Preferences," Econometrica, Econometric Society, vol. 67(2), pages 393-412, March.
    12. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    13. Chen, Bo, 2008. "On effective minimax payoffs and unequal discounting," Economics Letters, Elsevier, vol. 100(1), pages 105-107, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmona, Guilherme & Carvalho, Luís, 2016. "Repeated two-person zero-sum games with unequal discounting and private monitoring," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 131-138.
    2. Chihiro Morooka, 2021. "Equilibrium payoffs in two-player discounted OLG games," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(4), pages 1021-1032, December.
    3. Kimmo Berg, 2017. "Extremal Pure Strategies and Monotonicity in Repeated Games," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 387-404, March.
    4. Ani Dasgupta & Sambuddha Ghosh, 2017. "Repeated Games Without Public Randomization: A Constructive Approach," Boston University - Department of Economics - Working Papers Series WP2017-011, Boston University - Department of Economics, revised Feb 2019.
    5. ,, 2015. "Characterizing the limit set of PPE payoffs with unequal discounting," Theoretical Economics, Econometric Society, vol. 10(3), September.
    6. Marina Agranov & Jeongbin Kim & Leeat Yariv, 2023. "Coordination with Differential Time Preferences: Experimental Evidence," CESifo Working Paper Series 10454, CESifo.
    7. Aramendia, Miguel & Wen, Quan, 2020. "Myopic perception in repeated games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 1-14.
    8. Mitri Kitti, 2018. "Subgame Perfect Equilibria in Continuous-Time Repeated Games," Discussion Papers 120, Aboa Centre for Economics.
    9. Mitri Kitti, 2014. "Equilibrium Payoffs for Pure Strategies in Repeated Games," Discussion Papers 98, Aboa Centre for Economics.
    10. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aramendia, Miguel & Wen, Quan, 2020. "Myopic perception in repeated games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 1-14.
    2. Kimmo Berg, 2017. "Extremal Pure Strategies and Monotonicity in Repeated Games," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 387-404, March.
    3. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    4. Guéron, Yves & Lamadon, Thibaut & Thomas, Caroline D., 2011. "On the folk theorem with one-dimensional payoffs and different discount factors," Games and Economic Behavior, Elsevier, vol. 73(1), pages 287-295, September.
    5. Ghislain-Herman Demeze-Jouatsa, 2020. "A complete folk theorem for finitely repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1129-1142, December.
    6. Yuichi Yamamoto, 2010. "The use of public randomization in discounted repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 431-443, July.
    7. Carmona, Guilherme & Carvalho, Luís, 2016. "Repeated two-person zero-sum games with unequal discounting and private monitoring," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 131-138.
    8. Jean-Pierre Benoît & Vijay Krishna, 1996. "The Folk Theorems for Repeated Games - A Synthesis," Discussion Papers 96-03, University of Copenhagen. Department of Economics.
    9. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).
    10. Laclau, Marie & Tomala, Tristan, 2017. "Repeated games with public deterministic monitoring," Journal of Economic Theory, Elsevier, vol. 169(C), pages 400-424.
    11. Bo Chen & Satoru Fujishige, 2013. "On the feasible payoff set of two-player repeated games with unequal discounting," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 295-303, February.
    12. Bernergård, Axel, 2011. "Folk Theorems for Present-Biased Players," SSE/EFI Working Paper Series in Economics and Finance 736, Stockholm School of Economics.
    13. Gonzalez-Diaz, Julio, 2006. "Finitely repeated games: A generalized Nash folk theorem," Games and Economic Behavior, Elsevier, vol. 55(1), pages 100-111, April.
    14. Zhonghao SHUI, 2020. "Degree-K subgame perfect Nash equilibria and the folk theorem," Discussion papers e-20-001, Graduate School of Economics , Kyoto University.
    15. ,, 2015. "Characterizing the limit set of PPE payoffs with unequal discounting," Theoretical Economics, Econometric Society, vol. 10(3), September.
    16. Chen, Bo, 2008. "On effective minimax payoffs and unequal discounting," Economics Letters, Elsevier, vol. 100(1), pages 105-107, July.
    17. Laclau, M., 2013. "Repeated games with local monitoring and private communication," Economics Letters, Elsevier, vol. 120(2), pages 332-337.
    18. Mitri Kitti, 2014. "Equilibrium Payoffs for Pure Strategies in Repeated Games," Discussion Papers 98, Aboa Centre for Economics.
    19. Demeze-Jouatsa, Ghislain-Herman, 2018. "A complete folk theorem for finitely repeated games," Center for Mathematical Economics Working Papers 584, Center for Mathematical Economics, Bielefeld University.
    20. Can, Burak, 2014. "Weighted distances between preferences," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 109-115.

    More about this item

    Keywords

    Intertemporal trade; Folk theorem; Repeated game; Unequal discounting;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:76:y:2012:i:2:p:571-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.