IDEAS home Printed from
   My bibliography  Save this paper

Delayed Perfect Monitoring in Repeated Games


  • Kinateder, Markus


Delayed perfect monitoring in an in�nitely repeated discounted game is studied. A player perfectly observes any other player's action choice with a fixed, but finite delay. The observational delays between different pairs of players are heterogeneous and asymmetric. The Folk Theorem extends to this setup, although for a range of discount factors strictly below 1, the set of belief-free equilibria is reduced under certain conditions. This model applies to any situation in which there is a heterogeneous delay between information generation and the players-reaction to it.

Suggested Citation

  • Kinateder, Markus, 2009. "Delayed Perfect Monitoring in Repeated Games," MPRA Paper 20443, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:20443

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367 World Scientific Publishing Co. Pte. Ltd..
    2. Markus Kinateder, 2006. "Repeated Games Played in a Network," UFAE and IAE Working Papers 674.06, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    3. Fudenberg, Drew & Levine, David I & Maskin, Eric, 1994. "The Folk Theorem with Imperfect Public Information," Econometrica, Econometric Society, vol. 62(5), pages 997-1039, September.
    4. Markus Kinateder, 2010. "The Repeated Prisoner's Dilemma in a Network," Faculty Working Papers 08/10, School of Economics and Business Administration, University of Navarra.
    5. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-554, May.
    6. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    7. Cripps, Martin W. & Mailath, George J. & Samuelson, Larry, 2007. "Disappearing private reputations in long-run relationships," Journal of Economic Theory, Elsevier, vol. 134(1), pages 287-316, May.
    8. Kandori, Michihiro, 2002. "Introduction to Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 1-15, January.
    9. Glenn Ellison, 1994. "Cooperation in the Prisoner's Dilemma with Anonymous Random Matching," Review of Economic Studies, Oxford University Press, vol. 61(3), pages 567-588.
    10. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    11. Michihiro Kandori, 1992. "Social Norms and Community Enforcement," Review of Economic Studies, Oxford University Press, vol. 59(1), pages 63-80.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fudenberg, Drew & Ishii, Yuhta & Kominers, Scott Duke, 2014. "Delayed-response strategies in repeated games with observation lags," Journal of Economic Theory, Elsevier, vol. 150(C), pages 487-514.

    More about this item


    Repeated Game; Delayed Perfect Monitoring; Folk Theorem;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20443. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.