IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v39y2010i3p431-443.html
   My bibliography  Save this article

The use of public randomization in discounted repeated games

Author

Listed:
  • Yuichi Yamamoto

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Yuichi Yamamoto, 2010. "The use of public randomization in discounted repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 431-443, July.
  • Handle: RePEc:spr:jogath:v:39:y:2010:i:3:p:431-443
    DOI: 10.1007/s00182-009-0219-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-009-0219-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367 World Scientific Publishing Co. Pte. Ltd..
    2. Sorin, Sylvain, 1992. "Repeated games with complete information," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 4, pages 71-107 Elsevier.
    3. Wojciech Olszewski, 1998. "Note Perfect folk theorems. Does public randomization matter?," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 147-156.
    4. Fudenberg, Drew & Levine, David I & Maskin, Eric, 1994. "The Folk Theorem with Imperfect Public Information," Econometrica, Econometric Society, vol. 62(5), pages 997-1039, September.
    5. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    6. Fudenberg, Drew & Maskin, Eric, 1991. "On the dispensability of public randomization in discounted repeated games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 428-438, April.
    7. Salonen, Hannu & Vartiainen, Hannu, 2008. "Valuating payoff streams under unequal discount factors," Economics Letters, Elsevier, vol. 99(3), pages 595-598, June.
    8. Mailath, George J. & Obara, Ichiro & Sekiguchi, Tadashi, 2002. "The Maximum Efficient Equilibrium Payoff in the Repeated Prisoners' Dilemma," Games and Economic Behavior, Elsevier, vol. 40(1), pages 99-122, July.
    9. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hörner, Johannes & Takahashi, Satoru & Vieille, Nicolas, 2014. "On the limit perfect public equilibrium payoff set in repeated and stochastic games," Games and Economic Behavior, Elsevier, vol. 85(C), pages 70-83.
    2. Johannes H�rner & Satoru Takahashi & Nicolas Vieille, 2012. "On the Limit Equilibrium Payoff Set in Repeated and Stochastic Games," Working Papers 1397, Princeton University, Department of Economics, Econometric Research Program..
    3. repec:gam:jgames:v:8:y:2017:i:4:p:47-:d:117286 is not listed on IDEAS
    4. Kimmo Berg, 2017. "Extremal Pure Strategies and Monotonicity in Repeated Games," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 387-404, March.
    5. John Duffy & Félix Muñoz-García, 2012. "Patience or Fairness? Analyzing Social Preferences in Repeated Games," Games, MDPI, Open Access Journal, vol. 3(1), pages 1-22, March.
    6. Bo Chen & Satoru Fujishige, 2013. "On the feasible payoff set of two-player repeated games with unequal discounting," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 295-303, February.
    7. Houba, Harold & Wen, Quan, 2011. "Extreme equilibria in the negotiation model with different time preferences," Games and Economic Behavior, Elsevier, vol. 73(2), pages 507-516.

    More about this item

    Keywords

    Repeated game; Convexity; Monotonicity; Public randomization; C72; C73;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:39:y:2010:i:3:p:431-443. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.