IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2017-011.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Repeated Games Without Public Randomization: A Constructive Approach

Author

Listed:
  • Ani Dasgupta

    (International Maritime Business Department, Massachusetts Maritime Academy and Economics Department, Boston University.)

  • Sambuddha Ghosh

    (Economics Group, Shanghai University of Finance and Economics)

Abstract

We study discounted infinitely repeated games with perfect monitoring and without public randomization. Both symmetric and asymmetric discounting cases are considered; a new geometric construct called ‘self-accessibility’ is proposed and used to unify the analyses of these two cases. For symmetric discounting, our approach leads to easy computability of a discount factor bound needed to support a specific payoff vector in equilibrium. When discounting is allowed to be asymmetric, we show that any payoff vector that is in the interior of the smallest rectangular region containing the pureaction payoffs is realizable in the repeated game. Next, an easily-verifiable condition, ‘strict diagonalizability’, is offered as a sufficient and almost necessary condition for a payoff vector to be an equilibrium payoff for some discount factor vector. ‘Turnpike strategies’ that support a target payoff are explicitly constructed. Our results thus encompass and generalize Fudenberg and Maskin (1986, 1991).

Suggested Citation

  • Ani Dasgupta & Sambuddha Ghosh, 2017. "Repeated Games Without Public Randomization: A Constructive Approach," Boston University - Department of Economics - Working Papers Series WP2017-011, Boston University - Department of Economics, revised Feb 2019.
  • Handle: RePEc:bos:wpaper:wp2017-011
    as

    Download full text from publisher

    File URL: http://www.bu.edu/econ/files/2019/02/PRD_AD_2019_v4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Bo & Takahashi, Satoru, 2012. "A folk theorem for repeated games with unequal discounting," Games and Economic Behavior, Elsevier, vol. 76(2), pages 571-581.
    2. Bo Chen & Satoru Fujishige, 2013. "On the feasible payoff set of two-player repeated games with unequal discounting," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 295-303, February.
    3. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, December.
    4. Haag, Matthew & Lagunoff, Roger, 2007. "On the size and structure of group cooperation," Journal of Economic Theory, Elsevier, vol. 135(1), pages 68-89, July.
    5. Harrington, Joseph Jr., 1989. "Collusion among asymmetric firms: The case of different discount factors," International Journal of Industrial Organization, Elsevier, vol. 7(2), pages 289-307, June.
    6. Wojciech Olszewski, 1998. "Note Perfect folk theorems. Does public randomization matter?," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 147-156.
    7. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    8. Hörner, Johannes & Takahashi, Satoru, 2016. "How fast do equilibrium payoff sets converge in repeated games?," Journal of Economic Theory, Elsevier, vol. 165(C), pages 332-359.
    9. Fudenberg, Drew & Maskin, Eric, 1991. "On the dispensability of public randomization in discounted repeated games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 428-438, April.
    10. Salonen, Hannu & Vartiainen, Hannu, 2008. "Valuating payoff streams under unequal discount factors," Economics Letters, Elsevier, vol. 99(3), pages 595-598, June.
    11. Sorin, Sylvain, 1992. "Repeated games with complete information," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 4, pages 71-107, Elsevier.
    12. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-1063, September.
    13. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796, Decembrie.
    14. Yuichi Yamamoto, 2010. "The use of public randomization in discounted repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 431-443, July.
    15. ,, 2015. "Characterizing the limit set of PPE payoffs with unequal discounting," Theoretical Economics, Econometric Society, vol. 10(3), September.
    16. Ichiro Obara & Federico Zincenko, 2017. "Collusion and heterogeneity of firms," RAND Journal of Economics, RAND Corporation, vol. 48(1), pages 230-249, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chihiro Morooka, 2021. "Equilibrium payoffs in two-player discounted OLG games," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(4), pages 1021-1032, December.
    2. Chihiro Morooka, 2022. "A New Folk Theorem in OLG Games," CIRJE F-Series CIRJE-F-1203, CIRJE, Faculty of Economics, University of Tokyo.
    3. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).
    2. Kimmo Berg & Gijs Schoenmakers, 2017. "Construction of Subgame-Perfect Mixed-Strategy Equilibria in Repeated Games," Games, MDPI, vol. 8(4), pages 1-14, November.
    3. Laclau, Marie & Tomala, Tristan, 2017. "Repeated games with public deterministic monitoring," Journal of Economic Theory, Elsevier, vol. 169(C), pages 400-424.
    4. Yuichi Yamamoto, 2010. "The use of public randomization in discounted repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 431-443, July.
    5. Carmona, Guilherme & Carvalho, Luís, 2016. "Repeated two-person zero-sum games with unequal discounting and private monitoring," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 131-138.
    6. Aramendia, Miguel & Wen, Quan, 2020. "Myopic perception in repeated games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 1-14.
    7. Laclau, M., 2014. "Communication in repeated network games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 87(C), pages 136-160.
    8. Kimmo Berg, 2017. "Extremal Pure Strategies and Monotonicity in Repeated Games," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 387-404, March.
    9. Ashkenazi-Golan, Galit & Lehrer, Ehud, 2019. "What you get is what you see: Cooperation in repeated games with observable payoffs," Journal of Economic Theory, Elsevier, vol. 181(C), pages 197-237.
    10. Hörner, Johannes & Takahashi, Satoru, 2016. "How fast do equilibrium payoff sets converge in repeated games?," Journal of Economic Theory, Elsevier, vol. 165(C), pages 332-359.
    11. Bo Chen & Satoru Fujishige, 2013. "On the feasible payoff set of two-player repeated games with unequal discounting," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 295-303, February.
    12. Haag, Matthew & Lagunoff, Roger, 2007. "On the size and structure of group cooperation," Journal of Economic Theory, Elsevier, vol. 135(1), pages 68-89, July.
    13. Laclau, M., 2013. "Repeated games with local monitoring and private communication," Economics Letters, Elsevier, vol. 120(2), pages 332-337.
    14. Liu, Ce & Ali, S. Nageeb, 2019. "Conventions and Coalitions in Repeated Games," Working Papers 2019-8, Michigan State University, Department of Economics.
    15. Laclau, Marie, 2012. "A folk theorem for repeated games played on a network," Games and Economic Behavior, Elsevier, vol. 76(2), pages 711-737.
    16. ,, 2015. "Characterizing the limit set of PPE payoffs with unequal discounting," Theoretical Economics, Econometric Society, vol. 10(3), September.
    17. Chihiro Morooka, 2021. "Equilibrium payoffs in two-player discounted OLG games," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(4), pages 1021-1032, December.
    18. Houba, Harold & Wen, Quan, 2011. "Extreme equilibria in the negotiation model with different time preferences," Games and Economic Behavior, Elsevier, vol. 73(2), pages 507-516.
    19. Jérôme Renault & Tristan Tomala, 2011. "General Properties of Long-Run Supergames," Dynamic Games and Applications, Springer, vol. 1(2), pages 319-350, June.
    20. Chen, Bo & Takahashi, Satoru, 2012. "A folk theorem for repeated games with unequal discounting," Games and Economic Behavior, Elsevier, vol. 76(2), pages 571-581.

    More about this item

    Keywords

    ambiguity; Repeated Games; Public Randomization; Asymmetric Discounting;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2017-011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.