IDEAS home Printed from
   My bibliography  Save this paper

A Folk Theorem for Bargaining Games


  • Herings P.J.J.
  • Meshalkin A.
  • Predtetchinski A.



We study strategies with one–period recall in the context of a general class of multilateralbargaining games. A strategy has one–period recall if actions in a particular period are onlyconditioned on information in the previous and the current period. We show that if players aresufficiently patient, given any proposal in the space of possible agreements, there exists asubgame perfect equilibrium such that the given proposal is made and unanimously accepted inperiod zero. Our strategies are pure and have one–period recall, and we do not make use of apublic randomization device. The players’ discount factors are allowed to be heterogeneous.

Suggested Citation

  • Herings P.J.J. & Meshalkin A. & Predtetchinski A., 2012. "A Folk Theorem for Bargaining Games," Research Memorandum 056, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2012056

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "One-dimensional bargaining with Markov recognition probabilities," Journal of Economic Theory, Elsevier, vol. 145(1), pages 189-215, January.
    3. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "The folk theorem for irreducible stochastic games with imperfect public monitoring," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1664-1683, July.
    4. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, January.
    5. Kalyan Chatterjee & Bhaskar Dutia & Debraj Ray & Kunal Sengupta, 2013. "A Noncooperative Theory of Coalitional Bargaining," World Scientific Book Chapters,in: Bargaining in the Shadow of the Market Selected Papers on Bilateral and Multilateral Bargaining, chapter 5, pages 97-111 World Scientific Publishing Co. Pte. Ltd..
    6. James W. Friedman, 1971. "A Non-cooperative Equilibrium for Supergames," Review of Economic Studies, Oxford University Press, vol. 38(1), pages 1-12.
    7. Haller, Hans, 1986. "Non-cooperative bargaining of N [ges] 3 players," Economics Letters, Elsevier, vol. 22(1), pages 11-13.
    8. Merlo, Antonio & Wilson, Charles A, 1995. "A Stochastic Model of Sequential Bargaining with Complete Information," Econometrica, Econometric Society, vol. 63(2), pages 371-399, March.
    9. Tasos Kalandrakis, 2006. "Regularity of pure strategy equilibrium points in a class of bargaining games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 309-329, June.
    10. V. Bhaskar & George J. Mailathy & Stephen Morris, 2009. "A Foundation for Markov Equilibria in Infinite Horizon Perfect Information Games," Levine's Working Paper Archive 814577000000000178, David K. Levine.
    11. Johannes Hörner & Wojciech Olszewski, 2009. "How Robust is the Folk Theorem?," The Quarterly Journal of Economics, Oxford University Press, vol. 124(4), pages 1773-1814.
    12. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-554, May.
    13. Ehud Lehrer & Ady Pauzner, 1999. "Repeated Games with Differential Time Preferences," Econometrica, Econometric Society, vol. 67(2), pages 393-412, March.
    14. Binmore, Ken & Osborne, Martin J. & Rubinstein, Ariel, 1992. "Noncooperative models of bargaining," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 7, pages 179-225 Elsevier.
    15. Rubinstein, Ariel, 1979. "Equilibrium in supergames with the overtaking criterion," Journal of Economic Theory, Elsevier, vol. 21(1), pages 1-9, August.
    16. Banks, Jeffrey s. & Duggan, John, 2000. "A Bargaining Model of Collective Choice," American Political Science Review, Cambridge University Press, vol. 94(01), pages 73-88, March.
    17. Chen, Bo, 2008. "On effective minimax payoffs and unequal discounting," Economics Letters, Elsevier, vol. 100(1), pages 105-107, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:gamebe:v:103:y:2017:i:c:p:185-198 is not listed on IDEAS

    More about this item


    microeconomics ;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2012056. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Leonne Portz). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.