IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v41y2012i2p301-323.html
   My bibliography  Save this article

Sequential share bargaining

Author

Listed:
  • P. Herings
  • Arkadi Predtetchinski

Abstract

This paper presents a new extension of the Rubinstein-St°ahl bargaining model to the case with n players, called sequential share bargaining. The bargaining protocol is natural and has as its main feature that the players’ shares in the cake are determined sequentially. The bargaining protocol requires unanimous agreement for proposals to be implemented. Unlike all existing bargaining protocols with unanimous agreement, the resulting game has unique subgame perfect equilibrium utilities for any value of the discount factor. In equilibrium, agreement is reached immediately. The results are therefore qualitatively the same as in the two player case. The result builds on an analysis of so-called one-dimensional bargaining problems. We show that also one-dimensional bargaining problems have unique subgame perfect equilibrium utilities for any value of the discount factor, and that also in one-dimensional bargaining problems agreement is reached immediately.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from an
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • P. Herings & Arkadi Predtetchinski, 2012. "Sequential share bargaining," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(2), pages 301-323, May.
  • Handle: RePEc:spr:jogath:v:41:y:2012:i:2:p:301-323
    DOI: 10.1007/s00182-011-0286-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-011-0286-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00182-011-0286-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "One-dimensional bargaining with Markov recognition probabilities," Journal of Economic Theory, Elsevier, vol. 145(1), pages 189-215, January.
    3. Imai, Haruo & Salonen, Hannu, 2000. "The representative Nash solution for two-sided bargaining problems," Mathematical Social Sciences, Elsevier, vol. 39(3), pages 349-365, May.
    4. Haller, Hans, 1986. "Non-cooperative bargaining of N [ges] 3 players," Economics Letters, Elsevier, vol. 22(1), pages 11-13.
    5. Merlo, Antonio & Wilson, Charles A, 1995. "A Stochastic Model of Sequential Bargaining with Complete Information," Econometrica, Econometric Society, vol. 63(2), pages 371-399, March.
    6. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    7. Cardona, Daniel & Ponsati, Clara, 2007. "Bargaining one-dimensional social choices," Journal of Economic Theory, Elsevier, vol. 137(1), pages 627-651, November.
    8. Chae, Suchan & Yang, Jeong-Ae, 1988. "The unique perfect equilibrium of an n-person bargaining game," Economics Letters, Elsevier, vol. 28(3), pages 221-223.
    9. Cho, Seok-ju & Duggan, John, 2003. "Uniqueness of stationary equilibria in a one-dimensional model of bargaining," Journal of Economic Theory, Elsevier, vol. 113(1), pages 118-130, November.
    10. Suh, Sang-Chul & Wen, Quan, 2006. "Multi-agent bilateral bargaining and the Nash bargaining solution," Journal of Mathematical Economics, Elsevier, vol. 42(1), pages 61-73, February.
    11. Chen-Ying Huang, 2002. "Multilateral bargaining: conditional and unconditional offers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(2), pages 401-412.
    12. Banks, Jeffrey s. & Duggan, John, 2000. "A Bargaining Model of Collective Choice," American Political Science Review, Cambridge University Press, vol. 94(1), pages 73-88, March.
    13. Kalandrakis, Tasos, 2004. "Equilibria in sequential bargaining games as solutions to systems of equations," Economics Letters, Elsevier, vol. 84(3), pages 407-411, September.
    14. Yang, Jeong-Ae, 1992. "Another n-person bargaining game with a unique perfect equilibrium," Economics Letters, Elsevier, vol. 38(3), pages 275-277, March.
    15. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    16. Vijay Krishna & Roberto Serrano, 1996. "Multilateral Bargaining," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(1), pages 61-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. António Osório, 2017. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," Group Decision and Negotiation, Springer, vol. 26(2), pages 357-377, March.
    2. Erik Ansink & Hans-Peter Weikard, 2012. "Sequential sharing rules for river sharing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 187-210, February.
    3. Hurt, Wesley & Osório, António (António Miguel), 2014. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," Working Papers 2072/237596, Universitat Rovira i Virgili, Department of Economics.
    4. Anne van den Nouweland & Agnieszka Rusinowska, 2020. "Bargaining foundation for ratio equilibrium in public‐good economies," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(2), pages 302-319, April.
    5. Osório, António, 2017. "Self-interest and equity concerns: A behavioural allocation rule for operational problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 205-213.
    6. P. Jean-Jacques Herings & Harold Houba, 2022. "Costless delay in negotiations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(1), pages 69-93, July.
    7. Osório, António (António Miguel), 2016. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," Working Papers 2072/266574, Universitat Rovira i Virgili, Department of Economics.
    8. Osório, António (António Miguel), 2017. "Self-interest and Equity Concerns: A Behavioural Allocation Rule for Operational Problems," Working Papers 2072/290757, Universitat Rovira i Virgili, Department of Economics.
    9. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "One-dimensional bargaining with Markov recognition probabilities," Journal of Economic Theory, Elsevier, vol. 145(1), pages 189-215, January.
    10. Daniel Cardona & Antoni Rubí-Barceló, 2016. "Time-Preference Heterogeneity and Multiplicity of Equilibria in Two-Group Bargaining," Games, MDPI, vol. 7(2), pages 1-17, May.
    11. Osorio, Antonio, 2014. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," MPRA Paper 56690, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "One-dimensional bargaining with Markov recognition probabilities," Journal of Economic Theory, Elsevier, vol. 145(1), pages 189-215, January.
    2. Sang-Chul Suh & Quan Wen, 2003. "Multi-Agent Bilateral Bargaining with Endogenous Protocol," Vanderbilt University Department of Economics Working Papers 0305, Vanderbilt University Department of Economics.
    3. Torstensson, Pär, 2005. "An n-person Rubinstein bargaining game," Working Papers 2005:39, Lund University, Department of Economics.
    4. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2021. "Multi-lateral strategic bargaining without stationarity," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    5. Suh, Sang-Chul & Wen, Quan, 2006. "Multi-agent bilateral bargaining and the Nash bargaining solution," Journal of Mathematical Economics, Elsevier, vol. 42(1), pages 61-73, February.
    6. P. Jean-Jacques Herings & A. Predtetchinski, 2016. "Bargaining under monotonicity constraints," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(1), pages 221-243, June.
    7. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2014. "On the convergence to the Nash bargaining solution for action-dependent bargaining protocols," Games and Economic Behavior, Elsevier, vol. 86(C), pages 178-183.
    8. Herings, P.J.J. & Predtetchinski, A., 2011. "Procedurally fair income taxation schemes," Research Memorandum 035, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Herings, P.J.J. & Predtetchinski, A., 2011. "Procedurally fair taxation," Research Memorandum 024, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. Can, Burak, 2014. "Weighted distances between preferences," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 109-115.
    11. Predtetchinski, Arkadi, 2011. "One-dimensional bargaining," Games and Economic Behavior, Elsevier, vol. 72(2), pages 526-543, June.
    12. P. Jean-Jacques Herings & Harold Houba, 2022. "Costless delay in negotiations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(1), pages 69-93, July.
    13. Britz, V. & Herings, P.J.J. & Predtetchinski, A., 2012. "On the convergence to the Nash bargaining solution for endogenous bargaining protocols," Research Memorandum 030, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    14. Alejandro Caparrós, 2016. "Bargaining and International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 5-31, September.
    15. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "Non-cooperative support for the asymmetric Nash bargaining solution," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1951-1967, September.
    16. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2011. "On the asymptotic uniqueness of bargaining equilibria," Economics Letters, Elsevier, vol. 111(3), pages 243-246, June.
    17. Yi-Chun Chen & Xiao Luo, 2008. "Delay in a bargaining game with contracts," Theory and Decision, Springer, vol. 65(4), pages 339-353, December.
    18. Sang-Chul Suh & Quan Wen, 2009. "A multi-agent bilateral bargaining model with endogenous protocol," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(2), pages 203-226, August.
    19. Simon Hug & Tobias Schulz, 2007. "Referendums in the EU’s constitution building process," The Review of International Organizations, Springer, vol. 2(2), pages 177-218, June.
    20. Anne van den Nouweland & Agnieszka Rusinowska, 2020. "Bargaining foundation for ratio equilibrium in public‐good economies," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(2), pages 302-319, April.

    More about this item

    Keywords

    Noncooperative bargaining; Dynamic games; Subgame perfect equilibrium; Unanimous agreement; C78;
    All these keywords.

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:41:y:2012:i:2:p:301-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.