IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas036054422301263x.html
   My bibliography  Save this article

Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?

Author

Listed:
  • Namahoro, J.P.
  • Wu, Q.
  • Su, H.

Abstract

This study empirically explored the nexus of wind energy (with regards to the effect of the drought), industrial-economic development, and emitted CO2 in 41 World's top countries in wind energy consumption from 1997 to 2018. Cross-sectional augmented distributed lag estimators (CS-DL, CS-ARDL, CCE-P) and newly updated estimation packages to effectively assess the relationships between variables. Our results are the following: First, severe droughts were not a significant matter in wind energy, and consuming wind energy reasonably contributes to reducing emitted CO2, while industrial and economic development positively promotes CO2 emissions in sampled countries. Second, industrial development significantly promotes economic growth, while wind energy use has an insignificant positive effect on economic growth. Moreover, wind energy negatively affects industrial development. Third, two-way directional causal relationships were noted between CO2 and other covariates, this hypothesis was also noted between industrial development and economic growth and wind energy use. We, therefore, suggested policy implications to reduce CO2 across the globe and country-specific and consider the positive effect of wind energy on growth.

Suggested Citation

  • Namahoro, J.P. & Wu, Q. & Su, H., 2023. "Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s036054422301263x
    DOI: 10.1016/j.energy.2023.127869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301263X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Chudik & Kamiar Mohaddes & M. Hashem Pesaran & Mehdi Raissi, 2016. "Long-Run Effects in Large Heterogeneous Panel Data Models with Cross-Sectionally Correlated Errors," Advances in Econometrics, in: Essays in Honor of man Ullah, volume 36, pages 85-135, Emerald Group Publishing Limited.
    2. You, Wanhai & Lv, Zhike, 2018. "Spillover effects of economic globalization on CO2 emissions: A spatial panel approach," Energy Economics, Elsevier, vol. 73(C), pages 248-257.
    3. Westerlund, Joakim & Edgerton, David L., 2007. "A panel bootstrap cointegration test," Economics Letters, Elsevier, vol. 97(3), pages 185-190, December.
    4. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    5. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    6. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    7. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    8. Forbes, Kevin F. & Zampelli, Ernest M., 2019. "Wind energy, the price of carbon allowances, and CO2 emissions: Evidence from Ireland," Energy Policy, Elsevier, vol. 133(C).
    9. Kou, Gang & Yüksel, Serhat & Dinçer, Hasan, 2022. "Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects," Applied Energy, Elsevier, vol. 311(C).
    10. James Ford & Michelle Maillet & Vincent Pouliot & Thomas Meredith & Alicia Cavanaugh, 2016. "Adaptation and Indigenous peoples in the United Nations Framework Convention on Climate Change," Climatic Change, Springer, vol. 139(3), pages 429-443, December.
    11. Chudik, Alexander & Pesaran, M. Hashem, 2019. "Mean group estimation in presence of weakly cross-correlated estimators," Economics Letters, Elsevier, vol. 175(C), pages 101-105.
    12. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    13. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    14. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    15. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    16. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    17. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    18. Morbiato, T. & Borri, C. & Vitaliani, R., 2014. "Wind energy harvesting from transport systems: A resource estimation assessment," Applied Energy, Elsevier, vol. 133(C), pages 152-168.
    19. Ouyang, Puman & Fu, Shihe, 2012. "Economic growth, local industrial development and inter-regional spillovers from foreign direct investment: Evidence from China," China Economic Review, Elsevier, vol. 23(2), pages 445-460.
    20. Alizadeh Zolbin, Mahboubeh & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site integration considering wind /solar energy with supply/demand variation," Energy, Elsevier, vol. 252(C).
    21. Omri, Anis & Ben Mabrouk, Nejah & Sassi-Tmar, Amel, 2015. "Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1012-1022.
    22. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Hydropower externalities: A meta-analysis," Energy Economics, Elsevier, vol. 57(C), pages 66-77.
    23. Sun, Chuanwang & Zhang, Wenyue & Luo, Yuan & Xu, Yonghong, 2019. "The improvement and substitution effect of transportation infrastructure on air quality: An empirical evidence from China's rail transit construction," Energy Policy, Elsevier, vol. 129(C), pages 949-957.
    24. Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).
    25. Muhammad, Sulaman & Pan, Yanchun & Agha, Mujtaba Hassan & Umar, Muhammad & Chen, Siyuan, 2022. "Industrial structure, energy intensity and environmental efficiency across developed and developing economies: The intermediary role of primary, secondary and tertiary industry," Energy, Elsevier, vol. 247(C).
    26. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).
    27. Biying Yu & Yi-Ming Wei & Kei Gomi & Yuzuru Matsuoka, 2018. "Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households," Nature Energy, Nature, vol. 3(2), pages 109-118, February.
    28. Rahman, Mohammad Mafizur & Velayutham, Eswaran, 2020. "Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia," Renewable Energy, Elsevier, vol. 147(P1), pages 399-408.
    29. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    30. Shen, Weiguo & Cao, Liu & Li, Qiu & Zhang, Wensheng & Wang, Guiming & Li, Chaochao, 2015. "Quantifying CO2 emissions from China’s cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1004-1012.
    31. Ajmi, Ahdi Noomen & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sato, João Ricardo, 2015. "On the relationships between CO2 emissions, energy consumption and income: The importance of time variation," Energy Economics, Elsevier, vol. 49(C), pages 629-638.
    32. Ozturk, Ilhan & Aslan, Alper & Kalyoncu, Huseyin, 2010. "Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries," Energy Policy, Elsevier, vol. 38(8), pages 4422-4428, August.
    33. Jan Ditzen, 2018. "Estimating dynamic common-correlated effects in Stata," Stata Journal, StataCorp LP, vol. 18(3), pages 585-617, September.
    34. Jan Ditzen, 2021. "Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2," Stata Journal, StataCorp LP, vol. 21(3), pages 687-707, September.
    35. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    36. Duarte, Rosa & García-Riazuelo, Álvaro & Sáez, Luis Antonio & Sarasa, Cristina, 2022. "Economic and territorial integration of renewables in rural areas: Lessons from a long-term perspective," Energy Economics, Elsevier, vol. 110(C).
    37. Jason Hickel & Giorgos Kallis, 2020. "Is Green Growth Possible?," New Political Economy, Taylor & Francis Journals, vol. 25(4), pages 469-486, June.
    38. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    39. Faturay, Futu & Vunnava, Venkata Sai Gargeya & Lenzen, Manfred & Singh, Shweta, 2020. "Using a new USA multi-region input output (MRIO) model for assessing economic and energy impacts of wind energy expansion in USA," Applied Energy, Elsevier, vol. 261(C).
    40. Sun, Chuanwang & Li, Zhi & Ma, Tiemeng & He, Runyong, 2019. "Carbon efficiency and international specialization position: Evidence from global value chain position index of manufacture," Energy Policy, Elsevier, vol. 128(C), pages 235-242.
    41. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    42. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    43. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    44. Liponi, Angelica & Frate, Guido Francesco & Baccioli, Andrea & Ferrari, Lorenzo & Desideri, Umberto, 2022. "Impact of wind speed distribution and management strategy on hydrogen production from wind energy," Energy, Elsevier, vol. 256(C).
    45. Shahbaz, Muhammad & Salah Uddin, Gazi & Ur Rehman, Ijaz & Imran, Kashif, 2014. "Industrialization, electricity consumption and CO2 emissions in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 575-586.
    46. Joakim Westerlund & Mehdi Hosseinkouchack & Martin Solberger, 2016. "The Local Power of the CADF and CIPS Panel Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 845-870, May.
    47. Thai-Ha Le, Youngho Chang, and Donghyun Park, 2020. "Renewable and Nonrenewable Energy Consumption, Economic Growth, and Emissions: International Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-92.
    48. Sun, Chuanwang & Ding, Dan & Fang, Xingming & Zhang, Huiming & Li, Jianglong, 2019. "How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China's market," Energy, Elsevier, vol. 169(C), pages 637-645.
    49. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Fahad Asmi & Rizwanullah Muhammad, 2022. "CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 18-31, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namahoro, J.P. & Nzabanita, J. & Wu, Q., 2021. "The impact of total and renewable energy consumption on economic growth in lower and middle- and upper-middle-income groups: Evidence from CS-DL and CCEMG analysis," Energy, Elsevier, vol. 237(C).
    2. Namahoro, J.P. & Wu, Q. & Zhou, N. & Xue, S., 2021. "Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Gangopadhyay, Partha & Jain, Siddharth & Bakry, Walid, 2022. "In search of a rational foundation for the massive IT boom in the Australian banking industry: Can the IT boom really drive relationship banking?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Shu Wu & Majed Alharthi & Weihua Yin & Qaiser Abbas & Adnan Noor Shah & Saeed ur Rahman & Jamal Khan, 2021. "The Carbon-Neutral Energy Consumption and Emission Volatility: The Causality Analysis of ASEAN Region," Energies, MDPI, vol. 14(10), pages 1-14, May.
    5. Predrag Petrović, 2023. "Economic sustainability of energy conservation policy: improved panel data evidence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1473-1491, February.
    6. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    7. Appiah, Michael & Karim, Sitara & Naeem, Muhammad Abubakr & Lucey, Brian M., 2022. "Do institutional affiliation affect the renewable energy-growth nexus in the Sub-Saharan Africa: Evidence from a multi-quantitative approach," Renewable Energy, Elsevier, vol. 191(C), pages 785-795.
    8. Chang, Chiu-Lan & Fang, Ming, 2022. "Renewable energy-led growth hypothesis: New insights from BRICS and N-11 economies," Renewable Energy, Elsevier, vol. 188(C), pages 788-800.
    9. Tullio Gregori & Marco Giansoldati, 2023. "Do current and capital account liberalizations affect economic growth in the long run?," Empirical Economics, Springer, vol. 65(1), pages 247-273, July.
    10. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    11. Çiçekçi, Cumhur & Gaygısız, Esma, 2023. "Procyclicality of fiscal policy in oil-rich countries: Roles of resource funds and institutional quality," Resources Policy, Elsevier, vol. 85(PB).
    12. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.
    13. Namahoro, Jean Pierre & Qiaosheng, Wu & Hui, Su, 2022. "The copper production and economic growth nexus across the regional and global levels," Resources Policy, Elsevier, vol. 76(C).
    14. Ryan H. Murphy & Colin O’Reilly, 2023. "Freedom through taxation: the effect of fiscal capacity on the rule of law," European Journal of Law and Economics, Springer, vol. 56(1), pages 69-90, August.
    15. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    16. Muhammed BENLI, 2020. "The effect of external debt on long run economic growth in developing economies: Evidence from heterogeneous panel data models with cross sectional dependency," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(624), A), pages 127-138, Autumn.
    17. Jian Xue & Zeeshan Rasool & Raima Nazar & Ahmad Imran Khan & Shaukat Hussain Bhatti & Sajid Ali, 2021. "Revisiting Natural Resources—Globalization-Environmental Quality Nexus: Fresh Insights from South Asian Countries," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    18. Sinha, Avik & Shah, Muhammad Ibrahim & Mehta, Atul & Sharma, Rajesh, 2022. "Impact of Energy Innovation on Greenhouse Gas Emissions: Moderation of Regional Integration and Social Inequality in Asian Economies," ADBI Working Papers 1304, Asian Development Bank Institute.
    19. Kamalu, Kabiru & Wan Ibrahim, Wan Hakimah, 2022. "The Influence of Institutional Quality on Human Development: Evidence from Developing Countries," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 93-105.
    20. Gianni Carvelli, 2023. "The long-run effects of government expenditure on private investments: a panel CS-ARDL approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 620-645, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s036054422301263x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.