IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i10p6440-6452.html
   My bibliography  Save this article

Industry evolution, rational agents and the transition to sustainable electricity production

Author

Listed:
  • Safarzynska, Karolina
  • van den Bergh, Jeroen C.J.M.

Abstract

Guiding a transition to low carbon electricity requires a good understanding of the substitution of old by new technologies in the electricity industry. With the aim of explaining historical change from coal to gas in the British electricity industry, we develop a formal model of technological change, where energy technologies diffuse through the construction of new power plants. We considered two model versions: with rational and boundedly rational investors. In each model version, we look at the causal relations between price and output setting mechanisms, fuel and labour use, and investment decisions for different institutional arrangements. We quantify model parameters on data for the United Kingdom. We find that the version of the model with rational investors is capable of replicating well core features of UK electricity history. This includes a rapid diffusion of gas in electricity production, the evolution of the average size of newly installed plants, and a high percentage of electricity sales covered by (forward) contracts-for-difference. In this model setting, nuclear and renewable energies have no chance to diffuse on the market. In the version of the model with boundedly rational investors, nuclear power typically dominates electricity production. We discuss implications of our modelling results for making a transition to low carbon electricity in the future.

Suggested Citation

  • Safarzynska, Karolina & van den Bergh, Jeroen C.J.M., 2011. "Industry evolution, rational agents and the transition to sustainable electricity production," Energy Policy, Elsevier, vol. 39(10), pages 6440-6452, October.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:6440-6452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511005817
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hewlett, James G., 2005. "De-regulated electric power markets and operating nuclear power plants: the case of British energy," Energy Policy, Elsevier, vol. 33(18), pages 2293-2297, December.
    2. Allaz Blaise & Vila Jean-Luc, 1993. "Cournot Competition, Forward Markets and Efficiency," Journal of Economic Theory, Elsevier, vol. 59(1), pages 1-16, February.
    3. David M. Newbery, 2005. "Electricity liberalization in Britain: The quest for a satisfactory wholesale market design," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 43-70.
    4. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-24.
    5. Deddy Koesrindartoto & Junjie Sun, 2005. "An Agent-Based Computational Laboratory for Testing the Economic Reliability of Wholesale Power Market Designs," Computing in Economics and Finance 2005 50, Society for Computational Economics.
    6. Mitchell, Catherine & Connor, Peter, 2004. "Renewable energy policy in the UK 1990-2003," Energy Policy, Elsevier, vol. 32(17), pages 1935-1947, November.
    7. Andrew Atkeson & Patrick J. Kehoe, 2005. "Modeling and Measuring Organization Capital," Journal of Political Economy, University of Chicago Press, vol. 113(5), pages 1026-1053, October.
    8. Micola, Augusto Rupérez & Banal-Estañol, Albert & Bunn, Derek W., 2008. "Incentives and coordination in vertically related energy markets," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 381-393, August.
    9. Herguera, Inigo, 2000. "Bilateral contracts and the spot market for electricity: some observations on the British and the NordPool experiences," Utilities Policy, Elsevier, vol. 9(2), pages 73-80, June.
    10. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    11. Andrew Atkeson & Patrick J. Kehoe, 2007. "Modeling the Transition to a New Economy: Lessons from Two Technological Revolutions," American Economic Review, American Economic Association, vol. 97(1), pages 64-88, March.
    12. Frank A. Wolak & Robert H. Patrick, 2001. "The Impact of Market Rules and Market Structure on the Price Determination Process in the England and Wales Electricity Market," NBER Working Papers 8248, National Bureau of Economic Research, Inc.
    13. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    14. Allaz, Blaise, 1992. "Oligopoly, uncertainty and strategic forward transactions," International Journal of Industrial Organization, Elsevier, vol. 10(2), pages 297-308, June.
    15. Catherine D. Wolfram, 1999. "Measuring Duopoly Power in the British Electricity Spot Market," American Economic Review, American Economic Association, vol. 89(4), pages 805-826, September.
    16. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    17. Kira R. Fabrizio & Nancy L. Rose & Catherine D. Wolfram, 2007. "Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on US Electric Generation Efficiency," American Economic Review, American Economic Association, vol. 97(4), pages 1250-1277, September.
    18. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-1277, November.
    19. Thomas, Steve, 2006. "The British Model in Britain: Failing slowly," Energy Policy, Elsevier, vol. 34(5), pages 583-600, March.
    20. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    21. von der Fehr, Nils-Henrik Morch & Harbord, David, 1993. "Spot Market Competition in the UK Electricity Industry," Economic Journal, Royal Economic Society, vol. 103(418), pages 531-546, May.
    22. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    23. Tishler, Asher & Milstein, Irena & Woo, Chi-Keung, 2008. "Capacity commitment and price volatility in a competitive electricity market," Energy Economics, Elsevier, vol. 30(4), pages 1625-1647, July.
    24. Watson, Jim, 2004. "Selection environments, flexibility and the success of the gas turbine," Research Policy, Elsevier, vol. 33(8), pages 1065-1080, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Qinghua, 2016. "Institutional pressures and support from industrial zones for motivating sustainable production among Chinese manufacturers," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 402-409.
    2. repec:eee:rensus:v:77:y:2017:i:c:p:636-651 is not listed on IDEAS
    3. Tim Nelson, 2017. "Redesigning a 20th century regulatory framework to deliver 21st century energy technology," Journal of Bioeconomics, Springer, vol. 19(1), pages 147-164, April.
    4. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    5. Masini, Andrea & Menichetti, Emanuela, 2013. "Investment decisions in the renewable energy sector: An analysis of non-financial drivers," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 510-524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:6440-6452. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.