IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v144y2025ics0140988325001884.html
   My bibliography  Save this article

Toward sustainable practices in photovoltaic and agricultural greenhouse systems: An ecosystem services framework

Author

Listed:
  • Steren, Aviv
  • Slater, Yehuda
  • Rubin, Ofir D.
  • Fleischer, Aliza
  • Kan, Iddo

Abstract

Policies promoting agrivoltaics face the challenge of balancing between mitigating climate change and farmland preservation. This study applies an ecosystem-services (ESS) approach to evaluate the introduction of transparent solar panels (TSP) as photovoltaic and agricultural greenhouse systems (PVGs) with low impact on agricultural activities. Using a partial equilibrium model of Israel's vegetative agriculture, we simulate the introduction of TSP on farmers' optimal land allocation between open-field and covered crops and its sustainability. The model accounts for food and energy production as provisioning vegetative-agriculture ESS (VAESS), and for greenhouse-gas (GHG) emissions and open-field landscape as non-provisioning VAESS. Our findings suggest that TSP represents an economically viable and sustainable PVG technology. The adoption of TSP, alongside policies that internalize the value of non-provisioning ESS, is projected to convert 1.3 % of Israel's cultivable land from open fields to covered crops, contributing approximately 7 % to the nation's electricity supply. The estimated annual increase in VAESS per hectare is valued at $864, comprising $812 from electricity generation, $259 from GHG emission reductions, $277 in consumer surplus from agricultural products, offset by a $441 reduction in agricultural output, and a $43 decrease in landscape value. Our analysis demonstrates how an ecosystem services framework can guide policy decisions toward optimal land-use allocation in agrivoltaic systems.

Suggested Citation

  • Steren, Aviv & Slater, Yehuda & Rubin, Ofir D. & Fleischer, Aliza & Kan, Iddo, 2025. "Toward sustainable practices in photovoltaic and agricultural greenhouse systems: An ecosystem services framework," Energy Economics, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001884
    DOI: 10.1016/j.eneco.2025.108364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988325001884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2025.108364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basnet, Shyam Kumar & Jansson , Torbjorn & Heckelei, Thomas, 2021. "A Bayesian econometrics and risk programming approach for analysing the impact of decoupled payments in the European Union," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(03), January.
    2. Picchi, Paolo & van Lierop, Martina & Geneletti, Davide & Stremke, Sven, 2019. "Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review," Ecosystem Services, Elsevier, vol. 35(C), pages 241-259.
    3. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    4. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    5. Khan, Zaid Ashiq & Koondhar, Mansoor Ahmed & Tiantong, Ma & Khan, Aftab & Nurgazina, Zhanar & Tianjun, Liu & Fengwang, Ma, 2022. "Do chemical fertilizers, area under greenhouses, and renewable energies drive agricultural economic growth owing the targets of carbon neutrality in China?," Energy Economics, Elsevier, vol. 115(C).
    6. Paris, Quirino, 2017. "Cost function and positive mathematical programming," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(01), May.
    7. Weng, Weizhe & Morrison, Mark D. & Boyle, Kevin J. & Boxall, Peter C. & Rose, John, 2021. "Effects of the number of alternatives in public good discrete choice experiments," Ecological Economics, Elsevier, vol. 182(C).
    8. Mekbib G. Haile & Jan Brockhaus & Matthias Kalkuhl, 2016. "Short-term acreage forecasting and supply elasticities for staple food commodities in major producer countries," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-23, December.
    9. Kieslich, Marcus & Salles, Jean-Michel, 2021. "Implementation context and science-policy interfaces: Implications for the economic valuation of ecosystem services," Ecological Economics, Elsevier, vol. 179(C).
    10. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).
    11. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, June.
    13. Palatnik, Ruslana Rachel & Baum, Zvi & Kan, Iddo & Rapaport-Rom, Mickey, 2016. "Economic Impacts of Water Scarcity under Diverse Water Salinities," Conference papers 330173, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Kan, Iddo & Haim, David & Rapaport-Rom, Mickey & Shechter, Mordechai, 2009. "Environmental amenities and optimal agricultural land use: The case of Israel," Ecological Economics, Elsevier, vol. 68(6), pages 1893-1898, April.
    15. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    16. Tang, Cheng Keat & Gibbons, Stephen, 2024. "Are friends electric? Valuing the social costs of power lines using house prices," Energy Economics, Elsevier, vol. 134(C).
    17. Ruslana Palatnik & Roberto Roson, 2012. "Climate change and agriculture in computable general equilibrium models: alternative modeling strategies and data needs," Climatic Change, Springer, vol. 112(3), pages 1085-1100, June.
    18. Hatan, Shachar & Fleischer, Aliza & Tchetchik, Anat, 2021. "Economic valuation of cultural ecosystem services: The case of landscape aesthetics in the agritourism market," Ecological Economics, Elsevier, vol. 184(C).
    19. Rathore, Pushpendra Kumar Singh & Chauhan, Durg Singh & Singh, Rudra Pratap, 2019. "Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security," Renewable Energy, Elsevier, vol. 131(C), pages 297-307.
    20. Ian Bateman & Andrew Balmford, 2023. "Current conservation policies risk accelerating biodiversity loss," Nature, Nature, vol. 618(7966), pages 671-674, June.
    21. Aliza Fleischer & Yacov Tsur, 2009. "The Amenity Value of Agricultural Landscape and Rural–Urban Land Allocation," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 132-153, February.
    22. Argyris Kanellopoulos & Paul Berentsen & Thomas Heckelei & Martin Van Ittersum & Alfons Oude Lansink, 2010. "Assessing the Forecasting Performance of a Generic Bio‐Economic Farm Model Calibrated With Two Different PMP Variants," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 274-294, June.
    23. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    24. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    25. Magadley, Esther & Kabha, Ragheb & Yehia, Ibrahim, 2021. "Outdoor comparison of two organic photovoltaic panels: The effect of solar incidence angles and incident irradiance," Renewable Energy, Elsevier, vol. 173(C), pages 721-732.
    26. Bliemer, Michiel C.J. & Rose, John M. & Chorus, Caspar G., 2017. "Detecting dominance in stated choice data and accounting for dominance-based scale differences in logit models," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 83-104.
    27. Salak, B. & Kienast, F. & Olschewski, R. & Spielhofer, R. & Wissen Hayek, U. & Grêt-Regamey, A. & Hunziker, M., 2022. "Impact on the perceived landscape quality through renewable energy infrastructure. A discrete choice experiment in the context of the Swiss energy transition," Renewable Energy, Elsevier, vol. 193(C), pages 299-308.
    28. Cloé Garnache & Pierre R. Mérel, 2015. "What Can Acreage Allocations Say about Crop Supply Elasticities? A Convex Programming Approach to Supply Response Disaggregation," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(1), pages 236-256, February.
    29. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    30. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    31. Sirnik, Igor & Oudes, Dirk & Stremke, Sven, 2024. "Agrivoltaics and landscape change: First evidence from built cases in the Netherlands," Land Use Policy, Elsevier, vol. 140(C).
    32. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    33. Gaur, Vasundhara & Lang, Corey, 2023. "House of the rising sun: The effect of utility-scale solar arrays on housing prices," Energy Economics, Elsevier, vol. 122(C).
    34. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    35. Kroeger, Timm & Casey, Frank, 2007. "An assessment of market-based approaches to providing ecosystem services on agricultural lands," Ecological Economics, Elsevier, vol. 64(2), pages 321-332, December.
    36. Volpe, Richard & Green, Richard & Heien, Dale & Howitt, Richard, 2010. "Estimating the Supply Elasticity of California Wine Grapes Using Regional Systems of Equations," Journal of Wine Economics, Cambridge University Press, vol. 5(2), pages 219-235, April.
    37. Pierre Mérel & Santiago Bucaram, 2010. "Exact calibration of programming models of agricultural supply against exogenous supply elasticities," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(3), pages 395-418, September.
    38. Hammerle, Mara & Best, Rohan & Crosby, Paul, 2021. "Public acceptance of carbon taxes in Australia," Energy Economics, Elsevier, vol. 101(C).
    39. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    40. Rewitzer, Susanne & Huber, Robert & Grêt-Regamey, Adrienne & Barkmann, Jan, 2017. "Economic valuation of cultural ecosystem service changes to a landscape in the Swiss Alps," Ecosystem Services, Elsevier, vol. 26(PA), pages 197-208.
    41. Shriki, Noam & Rabinovici, Raul & Yahav, Kobi & Rubin, Ofir, 2023. "Prioritizing suitable locations for national-scale solar PV installations: Israel's site suitability analysis as a case study," Renewable Energy, Elsevier, vol. 205(C), pages 105-124.
    42. Rotem Zelingher & Andrea Ghermandi & Enrica Cian & Malcolm Mistry & Iddo Kan, 2019. "Economic Impacts of Climate Change on Vegetative Agriculture Markets in Israel," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 679-696, October.
    43. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    44. Jessica Barichello & Luigi Vesce & Paolo Mariani & Enrico Leonardi & Roberto Braglia & Aldo Di Carlo & Antonella Canini & Andrea Reale, 2021. "Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application," Energies, MDPI, vol. 14(19), pages 1-16, October.
    45. Mariel, Petr & Meyerhoff, Jürgen & Hess, Stephane, 2015. "Heterogeneous preferences toward landscape externalities of wind turbines – combining choices and attitudes in a hybrid model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 647-657.
    46. Quirino Paris, 2001. "Symmetric Positive Equilibrium Problem: A Framework for Rationalizing Economic Behavior with Limited Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(4), pages 1049-1061.
    47. Richard Carson & Theodore Groves, 2007. "Incentive and informational properties of preference questions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 181-210, May.
    48. Ian J. Bateman & Georgina M. Mace, 2020. "The natural capital framework for sustainably efficient and equitable decision making," Nature Sustainability, Nature, vol. 3(10), pages 776-783, October.
    49. Mekbib G. Haile & Jan Brockhaus & Matthias Kalku, 2016. "Erratum to: Short-term acreage forecasting and supply elasticities for staple food commodities in major producer countries," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-2, December.
    50. Rotem Zelingher & Andrea Ghermandi & Enrica de Cian & Malcolm Mistry & Iddo Kan, 2019. "Economic Impacts of Climate Change on Vegetative Agriculture Markets in Israel [Impact économique du changement climatique sur les marchés agricoles en Israël]," Post-Print hal-02617664, HAL.
    51. Russo, Carlo & Green, Richard D. & Howitt, Richard E., 2008. "Estimation Of Supply And Demand Elasticities Of California Commodities," Working Papers 37629, University of California, Davis, Department of Agricultural and Resource Economics.
    52. Fleischer, Aliza & Sternberg, Marcelo, 2006. "The economic impact of global climate change on Mediterranean rangeland ecosystems: A Space-for-Time approach," Ecological Economics, Elsevier, vol. 59(3), pages 287-295, September.
    53. Bruno Henry de Frahan, 2019. "Towards Econometric Mathematical Programming for Policy Analysis," Natural Resource Management and Policy, in: Siwa Msangi & Duncan MacEwan (ed.), Applied Methods for Agriculture and Natural Resource Management, chapter 0, pages 11-36, Springer.
    54. Cloé Garnache & Pierre Mérel & Richard Howitt & Juhwan Lee, 2017. "Calibration of shadow values in constrained optimisation models of agricultural supply," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(3), pages 363-397.
    55. Ian J. Bateman & Richard T. Carson & Brett Day & Michael Hanemann & Nick Hanley & Tannis Hett & Michael Jones-Lee & Graham Loomes, 2002. "Economic Valuation with Stated Preference Techniques," Books, Edward Elgar Publishing, number 2639, December.
    56. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    57. Valeria M. Toledo‐Gallegos & Jed Long & Danny Campbell & Tobias Börger & Nick Hanley, 2021. "Spatial clustering of willingness to pay for ecosystem services," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 673-697, September.
    58. Iddo Kan & Ofira Ayalon & Roy Federman, 2010. "On the efficiency of composting organic wastes," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 151-163, March.
    59. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).
    60. Pierre Mérel & Leo K. Simon & Fujin Yi, 2011. "A Fully Calibrated Generalized Constant-Elasticity-of-Substitution Programming Model of Agricultural Supply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 936-948.
    61. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    62. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    63. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production," Energies, MDPI, vol. 12(13), pages 1-15, July.
    64. Sirnik, I. & Sluijsmans, J. & Oudes, D. & Stremke, S., 2023. "Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    2. Yanay Farja & Mariusz Maciejczak, 2021. "Economic Implications of Agricultural Land Conversion to Solar Power Production," Energies, MDPI, vol. 14(19), pages 1-15, September.
    3. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(01), pages 1-16, April.
    4. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    5. Zhou, Wei, 2015. "Three essays on modeling biofuel feedstock supply," ISU General Staff Papers 201501010800005728, Iowa State University, Department of Economics.
    6. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    7. Weng, Weizhe & Cobourn, Kelly M. & Kemanian, Armen R. & Boyle, Kevin J. & Shi, Yuning & Stachelek, Joseph & White, Charles, 2020. "Quantifying Co-Benefits of Water Quality Policies: An Integrated Assessment Model of Nitrogen Management," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304667, Agricultural and Applied Economics Association.
    8. Athanasios Petsakos & Stelios Rozakis, 2022. "Models and muddles: comment on ‘Calibration of agricultural risk programming models using positive mathematical programming’," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 713-728, July.
    9. Varela, Elsa & Kallas, Zein, 2022. "Extensive Mediterranean agroecosystems and their linked traditional breeds: Societal demand for the conservation of the Majorcan black pig," Land Use Policy, Elsevier, vol. 112(C).
    10. Mohammad Ali Asaadi & Seyed Abolghasem Mortazavi & Omid Zamani & Gholam Hassan Najafi & Talal Yusaf & Seyed Salar Hoseini, 2019. "The Impacts of Water Pricing and Non-Pricing Policies on Sustainable Water Resources Management: A Case of Ghorveh Plain at Kurdistan Province, Iran," Energies, MDPI, vol. 12(14), pages 1-16, July.
    11. Wolfgang Britz & Linda Arata, 2019. "Econometric mathematical programming: an application to the estimation of costs and risk preferences at farm level," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 191-206, March.
    12. Yerushalmi, Erez, 2018. "Using Water Allocation in Israel as a Proxy for Imputing the Value of Agricultural Amenities," Ecological Economics, Elsevier, vol. 149(C), pages 12-20.
    13. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    14. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    15. Zhou, Wei & Babcock, Bruce A., 2014. "Endogenous Price in a Dynamic Model for Agricultural Supply Analysis," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170584, Agricultural and Applied Economics Association.
    16. Rampinelli, Giuliano Arns & Marcelino, Roderval & Possenti Damasceno, Jonathan & Caroline Stalter, Chaiane & Bouchardet, Arthur Thorstenberg Ribas & Mohr, Gustavo & Guber, Vilson, 2024. "Development of artificial lighting system for light supplementation in smart greenhouses with agrivoltaic systems," Renewable Energy, Elsevier, vol. 231(C).
    17. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.
    18. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    19. Aghabeygi, Mona & Louhichi, Kamel & Gomez y Paloma, Sergio, 2022. "Impacts of fertilizer subsidy reform options in Iran: an assessment using a Regional Crop Programming model," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 11(01), April.
    20. El Kolaly, Wael & Ma, Wenhui & Li, Ming & Darwesh, Mohammed, 2020. "The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect," Renewable Energy, Elsevier, vol. 159(C), pages 506-518.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.