IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925003844.html
   My bibliography  Save this article

Chaotic dynamics in an overlapping generations model: Forecasting and regularization

Author

Listed:
  • Alexeeva, Tatyana A.
  • Kuznetsov, Nikolay V.
  • Mokaev, Timur N.
  • Zelinka, Ivan

Abstract

Irregular dynamics (especially chaotic) is often undesirable in economics because it presents challenges for predicting and controlling the behavior of economic agents. In this paper, we used an overlapping generations (OLG) model with a control function in the form of government spending as an example, to demonstrate an effective approach to forecasting and regulating chaotic dynamics based on a combination of classical control methods and artificial intelligence algorithms. We showed that in the absence of control variables, both regular and irregular (including chaotic) behavior could be observed in the model. In the case of irregular dynamics, a small control action introduced in the model allows modifying the behavior of economic agents and switching their dynamics from irregular to regular mode. We used control synthesis by the Pyragas method to solve the problem of regularizing the irregular behavior and stabilizing unstable periodic orbits (UPOs) embedded in the chaotic attractor of the model. To maximize the basin of attraction of stabilized UPOs, we used several types of evolutionary algorithms (EAs). We compared the results obtained by applying these EAs in numerical experiments and verified the outcomes by numerical simulation. The proposed approach allows us to improve the forecasting of dynamics in the OLG model and make agents’ expectations more predictable.

Suggested Citation

  • Alexeeva, Tatyana A. & Kuznetsov, Nikolay V. & Mokaev, Timur N. & Zelinka, Ivan, 2025. "Chaotic dynamics in an overlapping generations model: Forecasting and regularization," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003844
    DOI: 10.1016/j.chaos.2025.116371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.