IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp815-824.html
   My bibliography  Save this article

Equilibrium fuel supply and carbon credit pricing under market competition and environmental regulations: A California case study

Author

Listed:
  • Hu, Kejia
  • Chen, Yuche

Abstract

Performance-based environmental regulation has gained popularity as a policy tool to prevent climate change. California implements a Low Carbon Fuel Standard regulation to reduce the average carbon intensity of fuels by 10 percent, without specifying technologies to achieve the target. A carbon trading market is established to facilitate fuel producers making revenue by producing low carbon second-generation renewable fuels. There is a knowledge gap in understanding interactions between commodity and carbon trade markets under performance-based regulation. We propose a mathematical program with an equilibrium constraints model to find the equilibrium transportation energy portfolio under environmental protection policy. The model utilizes Karush-Kuhn-Tucker optimality conditions to represent the profit maximization of fuel suppliers. Profit is counted in both the commodity market and the carbon trading market. Our results show that carbon credit encourages the production of second-generation biofuels, which plays a critical role in the success of the Low Carbon Fuel Standard. Carbon credit price is driven by compliance with carbon intensity regulations, which we prove through mathematical formulation and empirical data analysis. Reducing carbon intensity is the key to promote biobutanol underperformance based on the low carbon fuel policy. The proposed framework, with small adjustments, can be used to evaluate performance-based regulation in other fields.

Suggested Citation

  • Hu, Kejia & Chen, Yuche, 2019. "Equilibrium fuel supply and carbon credit pricing under market competition and environmental regulations: A California case study," Applied Energy, Elsevier, vol. 236(C), pages 815-824.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:815-824
    DOI: 10.1016/j.apenergy.2018.12.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Onal, Hayri, 2010. "Meeting the Mandate for Biofuels: Implications for Land Use and Food and Fuel Prices," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61629, Agricultural and Applied Economics Association.
    2. Farzad Taheripour & Wallace E. Tyner, 2010. "Biofuels, Policy Options, and Their Implications: Analyses Using Partial and General Equilibrium Approaches," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 365-383, Springer.
    3. Mason, Charles F. & Wilmot, Neil A., 2016. "Price discontinuities in the market for RINs," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 79-97.
    4. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    5. Jin, Yayuan & Illukpitiya, Prabodh, 2016. "Cost minimization of supplying biomass for ethanol biorefineries," Energy, Elsevier, vol. 96(C), pages 209-214.
    6. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    7. Huang, Yongxi & Chen, Yihsu, 2014. "Analysis of an imperfectly competitive cellulosic biofuel supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 1-14.
    8. Madhu Khanna & Hayri Önal & Xiaoguang Chen & Haixiao Huang, 2010. "Meeting Biofuels Targets: Implications for Land Use, Greenhouse Gas Emissions, and Nitrogen Use in Illinois," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 287-305, Springer.
    9. John D. Anderson & Keith H. Coble, 2010. "Impact of renewable fuels standard ethanol mandates on the corn market," Agribusiness, John Wiley & Sons, Ltd., vol. 26(1), pages 49-63.
    10. Lihong Lu McPhail & Bruce A. Babcock, 2008. "Ethanol, Mandates, and Drought: Insights from a Stochastic Equilibrium Model of the U.S. Corn Market," Center for Agricultural and Rural Development (CARD) Publications 08-wp464, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    11. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    12. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    13. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    14. Coglianese, Cary & Nash, Jennifer & Olmstead, Todd, 2002. "Performance-Based Regulation: Prospects and Limitations in Health, Safety and Environmental Protection," Working Paper Series rwp02-050, Harvard University, John F. Kennedy School of Government.
    15. Sappington, David E. M. & Pfeifenberger, Johannes P. & Hanser, Philip & Basheda, Gregory N., 2001. "The State of Performance-Based Regulation in the U.S. Electric Utility Industry," The Electricity Journal, Elsevier, vol. 14(8), pages 71-79, October.
    16. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    17. Moncada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2017. "Exploring path dependence, policy interactions, and actor behavior in the German biodiesel supply chain," Applied Energy, Elsevier, vol. 195(C), pages 370-381.
    18. Levasseur, Annie & Bahn, Olivier & Beloin-Saint-Pierre, Didier & Marinova, Mariya & Vaillancourt, Kathleen, 2017. "Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach," Applied Energy, Elsevier, vol. 198(C), pages 440-452.
    19. Trindade, Wagner Roberto da Silva & Santos, Rogério Gonçalves dos, 2017. "Review on the characteristics of butanol, its production and use as fuel in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 642-651.
    20. Thompson, Wyatt & Meyer, Seth & Westhoff, Pat, 2009. "How does petroleum price and corn yield volatility affect ethanol markets with and without an ethanol use mandate?," Energy Policy, Elsevier, vol. 37(2), pages 745-749, February.
    21. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    22. Pereira, L.G. & Dias, M.O.S. & Mariano, A.P. & Maciel Filho, R. & Bonomi, A., 2015. "Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: Fermentative versus catalytic routes," Applied Energy, Elsevier, vol. 160(C), pages 120-131.
    23. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2012. "Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium," Energy Economics, Elsevier, vol. 34(5), pages 1623-1633.
    24. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    25. Rajagapol, Deepak & Sexton, Steven & Hochman, Gal & Roland-Holst, David & Zilberman, David D, 2009. "Model estimates food-versus-biofuel trade-off," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt41k1w82x, Department of Agricultural & Resource Economics, UC Berkeley.
    26. Whistance, Jarrett & Thompson, Wyatt & Meyer, Seth, 2017. "Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard," Energy Policy, Elsevier, vol. 101(C), pages 447-455.
    27. Huang, Shiyang & Hu, Guiping, 2018. "Biomass supply contract pricing and environmental policy analysis: A simulation approach," Energy, Elsevier, vol. 145(C), pages 557-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2021. "Sustainable advanced distribution management system design considering differential pricing schemes and carbon emissions," Energy, Elsevier, vol. 219(C).
    2. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    3. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    4. Grisales Díaz, Victor Hugo & Willis, Mark J. & von Stosch, Moritz & Olivar Tost, Gerard & Prado-Rubio, Oscar, 2020. "Assessing the energy requirements for butanol production using fermentation tanks-in-series operated under vacuum," Renewable Energy, Elsevier, vol. 160(C), pages 1253-1264.
    5. Jian Zhou & Kexin Xu & Yuxiu Zhao & Haoran Zheng & Zhengnan Dong, 2021. "Hub-and-Spoke Logistics Network Considering Pricing and Co-Opetition," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    6. Elaheh Jafarnejad & Ahmad Makui & Ashkan Hafezalkotob & Amir Aghsami, 2024. "Governance intervention policies in the production competition of biofuels and fossil fuels: a pathway to sustainable development," Operations Management Research, Springer, vol. 17(2), pages 660-682, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2012. "Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium," Energy Economics, Elsevier, vol. 34(5), pages 1623-1633.
    2. Wang, Xiaolei & Ouyang, Yanfeng & Yang, Hai & Bai, Yun, 2013. "Optimal biofuel supply chain design under consumption mandates with renewable identification numbers," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 158-171.
    3. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    4. Wang, Xin & Lim, Michael K. & Ouyang, Yanfeng, 2017. "Food-energy-environment trilemma: Policy impacts on farmland use and biofuel industry development," Energy Economics, Elsevier, vol. 67(C), pages 35-48.
    5. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2016. "Enhanced models and improved solution for competitive biofuel supply chain design under land use constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 281-297.
    6. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Hoyle, Aaron & Peters, Jotham & Jaccard, Mark & Rhodes, Ekaterina, 2024. "Additional or accidental? Simulating interactions between a low-carbon fuel standard and other climate policy instruments in Canada," Energy Policy, Elsevier, vol. 185(C).
    8. Mandegari, Mohsen & Ebadian, Mahmood & Saddler, Jack (John), 2023. "The need for effective life cycle assessment (LCA) to enhance the effectiveness of policies such as low carbon fuel standards (LCFS's)," Energy Policy, Elsevier, vol. 181(C).
    9. Cui, Hao (David) & Tyner, Wally, 2017. "Modeling Land Intensification Response in GTAP: Implications for Biofuels Induced Land Use Change," Conference papers 332812, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Trumbo, Jennifer L. & Tonn, Bruce E., 2016. "Biofuels: A sustainable choice for the United States' energy future?," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 147-161.
    11. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    12. McPhail, Lihong Lu & Babcock, Bruce A., 2012. "Impact of US biofuel policy on US corn and gasoline price variability," Energy, Elsevier, vol. 37(1), pages 505-513.
    13. Gal Hochman & Scott Kaplan & Deepak Rajagopal & David Zilberman, 2012. "Biofuel and Food-Commodity Prices," Agriculture, MDPI, vol. 2(3), pages 1-10, September.
    14. Zhou, Wei & Babcock, Bruce A., 2017. "Using the competitive storage model to estimate the impact of ethanol and fueling investment on corn prices," Energy Economics, Elsevier, vol. 62(C), pages 195-203.
    15. Baral, Nawa Raj & Quiroz-Arita, Carlos & Bradley, Thomas H., 2017. "Uncertainties in corn stover feedstock supply logistics cost and life-cycle greenhouse gas emissions for butanol production," Applied Energy, Elsevier, vol. 208(C), pages 1343-1356.
    16. Gabriel E. Lade & James Bushnell, 2019. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(3), pages 563-592.
    17. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    18. Gabriel E. Lade & James Bushnell, 2016. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Center for Agricultural and Rural Development (CARD) Publications 16-wp570, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    19. Wang, Xin & Lim, Michael K. & Ouyang, Yanfeng, 2015. "Infrastructure deployment under uncertainties and competition: The biofuel industry case," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 1-15.
    20. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:815-824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.