IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v97y2008i1-2p56-67.html
   My bibliography  Save this article

Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and ex ante recommendations by model, site and year

Author

Listed:
  • Rajsic, Predrag
  • Weersink, Alfons

Abstract

While there appear to be costs to farmers of over-applying nitrogen, there is evidence in many regions that farmers are applying nitrogen at levels that exceed those suggested by government extension services. A major reason why farmers would apparently waste money by applying more fertilizer than a crop can use is a perception that the general recommendations are not appropriate for their individual situations. In this paper we estimate the economically optimal rates for 7 Ontario sites over multiple years using four yield response functional forms to examine whether the profit-maximizing rates as determined at the end of the growing season (ex post optimal rates) are generally higher than recommended rates due to site, year, or yield response functional form differences. There was no statistical or economic basis for selecting one response model over another suggesting functional form choice or perception is not a reason for over-application. However, there was a great deal of variability found between the actual optimal rate for the season and the ex ante recommended rate, which is constant across seasons for a given site. While the recommended rate is higher than the maximum economic rate of nitrogen (MERN) on the majority of sites examined, the distribution is skewed due to a few large differences. When the recommended rate is lower than the ex post MERN in a given year, it tends to occur on less productive sites and is much lower. The pay-off function to alternative nitrogen rates is generally flat as the difference between the MERN and recommended was less than $10/ha on approximately one-third of the trials but there are large differences in the good years on less productive sites. Thus, the decision to apply more than average to take advantage of the good years is appropriate since the cost of over-application is low compared to the cost of under-application. While the pay off to soil testing for nitrogen and consequently variable rate application technology is brought into question, there appears to be significant value to information on the growing conditions for the upcoming season particularly on less productive sites. Another implication of the study is the need to have a sufficient range of application rates in nitrogen field trials for accurate estimation of the underlying response function.

Suggested Citation

  • Rajsic, Predrag & Weersink, Alfons, 2008. "Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and ex ante recommendations by model, site and year," Agricultural Systems, Elsevier, vol. 97(1-2), pages 56-67, April.
  • Handle: RePEc:eee:agisys:v:97:y:2008:i:1-2:p:56-67
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(07)00123-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn Sheriff, 2005. "Efficient Waste? Why Farmers Over-Apply Nutrients and the Implications for Policy Design," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(4), pages 542-557.
    2. Babcock, Bruce A. & Pautsch, Gregory R., 1998. "Moving From Uniform To Variable Fertilizer Rates On Iowa Corn: Effects On Rates And Returns," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 23(2), pages 1-16, December.
    3. Wang, Jun & Lowenberg-DeBoer, J., 1988. "Estimating and Testing Linear Response and Plateau Functions for Crops in Rotation when Carryover Exists," 1988 Annual Meeting, August 1-3, Knoxville, Tennessee 270451, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. David J. Pannell, 2006. "Flat Earth Economics: The Far-reaching Consequences of Flat Payoff Functions in Economic Decision Making," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(4), pages 553-566.
    5. Bruce A. Babcock & Alfred M. Blackmer, 1994. "The Ex Post Relationship between Growing Conditions and Optimal Fertilizer Levels," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 16(3), pages 353-362.
    6. Neil R. Miller, 2006. "Is Site-Specific Yield Response Consistent over Time? Does It Pay?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(2), pages 471-483.
    7. Satya Yadav & Willis Peterson & K. Easter, 1997. "Do farmers overuse nitrogen fertilizer to the detriment of the environment?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 323-340, April.
    8. Babcock, Bruce A. & Blackmer, A. M., 1994. "Ex Post Relationship Between Growing Conditions and Nitrogen Fertilizer Levels (The)," Staff General Research Papers Archive 10582, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chai, Yuan & Pannell, David J. & Pardey, Philip G., 2022. "Reducing Water Pollution from Nitrogen Fertilizer: Revisiting Insights from Production Economics," Staff Papers 320519, University of Minnesota, Department of Applied Economics.
    2. Predrag Rajsic & Alfons Weersink & Markus Gandorfer, 2009. "Risk and Nitrogen Application Levels," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(2), pages 223-239, June.
    3. Monjardino, Marta & McBeath, T. & Brennan, Lisa E. & Llewellyn, Rick S., 2012. "Are farmers in low-rainfall cropping regions under-fertilizing? An Australian case-study," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124976, International Association of Agricultural Economists.
    4. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.
    5. Andreas Meyer-Aurich & Yusuf Nadi Karatay, 2022. "Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
    6. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    7. Pedersen, Michael Friis & Gyldengren, Jacob Glerup & Pedersen, Søren Marcus & Diamantopoulos, Efstathios & Gislum, René & Styczen, Merete Elisabeth, 2021. "A simulation of variable rate nitrogen application in winter wheat with soil and sensor information - An economic feasibility study," Agricultural Systems, Elsevier, vol. 192(C).
    8. Meyer-Aurich, Andreas & Weersink, Alfons & Gandorfer, Markus & Wagner, Peter, 2010. "Optimal site-specific fertilization and harvesting strategies with respect to crop yield and quality response to nitrogen," Agricultural Systems, Elsevier, vol. 103(7), pages 478-485, September.
    9. De Laporte, Aaron & Banger, Kamaljit & Weersink, Alfons & Wagner-Riddle, Claudia & Grant, Brian & Smith, Ward, 2021. "Economic and environmental consequences of nitrogen application rates, timing and methods on corn in Ontario," Agricultural Systems, Elsevier, vol. 188(C).
    10. Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.
    11. Schuurman, Daniel & Weersink, Alfons & Delaporte, Aaron, 2021. "Optimal Sequential Crop Choices for Soil Carbon Management: A Dynamic Programming Approach," 2021 Annual Meeting, August 1-3, Austin, Texas 314042, Agricultural and Applied Economics Association.
    12. Emmanuel K. Yiridoe & Frederick Amon-Armah & Dale Hebb & Rob Jamieson, 2017. "Eco-efficient choice of cropping system for reducing nitrate-N leaching in an agricultural watershed," Journal of Bioeconomics, Springer, vol. 19(2), pages 201-221, July.
    13. Monjardino, Marta & McBeath, T. & Brennan, Lisa E. & Llewellyn, Rick S., 2012. "Revisiting N fertilisation rates in low-rainfall grain cropping regions of Australia: A risk analysis," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124339, Australian Agricultural and Resource Economics Society.
    14. Finger, Robert & Hediger, Werner, 2007. "The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn," MPRA Paper 4740, University Library of Munich, Germany.
    15. Yiridoe, Emmanuel K. & Amon-Armah, Frederick & Hebb, Dale & Jamieson, Rob, 2013. "Eco-efficiency of Alternative Cropping Systems Managed in an Agricultural Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150357, Agricultural and Applied Economics Association.
    16. Carr, Gemma & Potter, Robert B. & Nortcliff, Stephen, 2011. "Water reuse for irrigation in Jordan: Perceptions of water quality among farmers," Agricultural Water Management, Elsevier, vol. 98(5), pages 847-854, March.
    17. Hyytiäinen, Kari & Niemi, Jarkko K. & Koikkalainen, Kauko & Palosuo, Taru & Salo, Tapio, 2011. "Adaptive optimization of crop production and nitrogen leaching abatement under yield uncertainty," Agricultural Systems, Elsevier, vol. 104(8), pages 634-644, October.
    18. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    19. Michael Friedrich Tröster & Johannes Sauer, 2021. "IoFarm in Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and Market Performance in Crop Production?," Agriculture, MDPI, vol. 11(6), pages 1-22, June.
    20. Nordblom, Thomas L. & Hutchings, Timothy R. & Godfrey, Sosheel S. & Schefe, Cassandra R., 2021. "Precision variable rate nitrogen for dryland farming on waterlogging Riverine Plains of Southeast Australia?," Agricultural Systems, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asci, Serhat & Borisova, Tatiana & VanSickle, John J. & Zotarelli, Lincoln, 2012. "Risk and Nitrogen Application Decisions in Florida Potato Production," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119797, Southern Agricultural Economics Association.
    2. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    3. Gandorfer, Markus & Rajsic, Predrag, 2008. "Modeling Economic Optimum Nitrogen Rates for Winter Wheat When Inputs Affect Yield and Output-Price," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 9(2).
    4. Andreas Meyer-Aurich & Jørgen Olesen & Annette Prochnow & Reiner Brunsch, 2013. "Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(7), pages 921-932, October.
    5. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2014. "Risks in Potato Production: Fertilizer, Water, and Producers’ Decision Making," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162536, Southern Agricultural Economics Association.
    6. Nurmakhanova, Mira, 2008. "Essays on fall fertilizer application," ISU General Staff Papers 2008010108000016739, Iowa State University, Department of Economics.
    7. Chai, Yuan & Pannell, David J. & Pardey, Philip G., 2022. "Reducing Water Pollution from Nitrogen Fertilizer: Revisiting Insights from Production Economics," Staff Papers 320519, University of Minnesota, Department of Applied Economics.
    8. Sellars, Sarah C. & Schnitkey, Gary D. & Gentry, Laura F., 2020. "Do Illinois Farmers Follow University-Based Nitrogen Recommendations?," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304617, Agricultural and Applied Economics Association.
    9. Babcock, Bruce A. & Pautsch, Gregory R., 1998. "Moving From Uniform To Variable Fertilizer Rates On Iowa Corn: Effects On Rates And Returns," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 23(2), pages 1-16, December.
    10. Geoffroy Enjolras & Magali Aubert, 2018. "Does crop insurance lead to better environmental practices? Evidence from French farms," Post-Print hal-02048349, HAL.
    11. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    12. Yiridoe, Emmanuel K. & Amon-Armah, Frederick & Hebb, Dale & Jamieson, Rob, 2013. "Eco-efficiency of Alternative Cropping Systems Managed in an Agricultural Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150357, Agricultural and Applied Economics Association.
    13. Frederic Ouedraogo & B. Wade Brorsen, 2018. "Hierarchical Bayesian Estimation of a Stochastic Plateau Response Function: Determining Optimal Levels of Nitrogen Fertilization," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(1), pages 87-102, March.
    14. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    15. Enjolras, Geoffroy & Capitanio, Fabian & Aubert, Magali & Adinolfi, Felice, 2012. "Direct payments, crop insurance and the volatility of farm income. Some evidence in France and in Italy," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122478, European Association of Agricultural Economists.
    16. Lijing Gao & J. Arbuckle, 2022. "Examining farmers’ adoption of nutrient management best management practices: a social cognitive framework," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 535-553, June.
    17. Williamson, James M., 2010. "Does Information Matter? Assessing the Role of Information and Prices in the Nitrogen Fertilizer Management Decision," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 60892, Agricultural and Applied Economics Association.
    18. Glenn Sheriff, 2005. "Efficient Waste? Why Farmers Over-Apply Nutrients and the Implications for Policy Design," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(4), pages 542-557.
    19. Livanis, Grigorios T. & Salois, Matthew J. & Moss, Charles B., 2009. "A Nonparametric Kernel Representation of the Agricultural Production Function: Implications for Economic Measures of Technology," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51063, Agricultural Economics Society.
    20. Geoffroy Enjolras & Magali Aubert, 2020. "How does crop insurance influence pesticide use? Evidence from French farms," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 461-485, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:97:y:2008:i:1-2:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.