IDEAS home Printed from https://ideas.repec.org/p/ags/aaea21/314042.html
   My bibliography  Save this paper

Optimal Sequential Crop Choices for Soil Carbon Management: A Dynamic Programming Approach

Author

Listed:
  • Schuurman, Daniel
  • Weersink, Alfons
  • Delaporte, Aaron

Abstract

No abstract is available for this item.

Suggested Citation

  • Schuurman, Daniel & Weersink, Alfons & Delaporte, Aaron, 2021. "Optimal Sequential Crop Choices for Soil Carbon Management: A Dynamic Programming Approach," 2021 Annual Meeting, August 1-3, Austin, Texas 314042, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea21:314042
    DOI: 10.22004/ag.econ.314042
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/314042/files/SchuurmanAbstracts_21_06_15_21_52_36_11__209_213_224_9_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.314042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emanuele Lugato & Adrian Leip & Arwyn Jones, 2018. "Mitigation potential of soil carbon management overestimated by neglecting N2O emissions," Nature Climate Change, Nature, vol. 8(3), pages 219-223, March.
    2. Kenneth E. McConnell, 1983. "An Economic Model of Soil Conservation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(1), pages 83-89.
    3. Cai, Ruohong & Bergstrom, John C. & Mullen, Jeffrey D. & Wetzstein, Michael E., "undated". "A Dynamic Optimal Crop Rotation Model in Acreage Response," Faculty Series 103949, University of Georgia, Department of Agricultural and Applied Economics.
    4. Antle, John M & Crissman, Charles C, 1990. "Risk, Efficiency, and the Adoption of Modern Crop Varieties: Evidence from the Philippines," Economic Development and Cultural Change, University of Chicago Press, vol. 38(3), pages 517-537, April.
    5. Alfons Weersink & Scott Jeffrey & David Pannell, 2002. "Farm-Level Modeling for Bigger Issues," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 24(1), pages 123-140.
    6. Cong, Rong-Gang & Hedlund, Katarina & Andersson, Hans & Brady, Mark, 2014. "Managing soil natural capital: An effective strategy for mitigating future agricultural risks," MPRA Paper 112155, University Library of Munich, Germany.
    7. Wossink, Ada & Swinton, Scott M., 2007. "Jointness in production and farmers' willingness to supply non-marketed ecosystem services," Ecological Economics, Elsevier, vol. 64(2), pages 297-304, December.
    8. Mark A. Bradford & Chelsea J. Carey & Lesley Atwood & Deborah Bossio & Eli P. Fenichel & Sasha Gennet & Joseph Fargione & Jonathan R. B. Fisher & Emma Fuller & Daniel A. Kane & Johannes Lehmann & Emil, 2019. "Soil carbon science for policy and practice," Nature Sustainability, Nature, vol. 2(12), pages 1070-1072, December.
    9. Castellazzi, M.S. & Wood, G.A. & Burgess, P.J. & Morris, J. & Conrad, K.F. & Perry, J.N., 2008. "A systematic representation of crop rotations," Agricultural Systems, Elsevier, vol. 97(1-2), pages 26-33, April.
    10. Mason, Charles F. & Plantinga, Andrew J., 2013. "The additionality problem with offsets: Optimal contracts for carbon sequestration in forests," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 1-14.
    11. David A. Hennessy, 2006. "On Monoculture and the Structure of Crop Rotations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 900-914.
    12. Michael Livingston & Michael J. Roberts & Yue Zhang, 2015. "Optimal Sequential Plantings of Corn and Soybeans Under Price Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 855-878.
    13. Bertrand Guenet & Benoit Gabrielle & Claire Chenu & Dominique Arrouays & Jérôme Balesdent & Martial Bernoux & Elisa Bruni & Jean-Pierre Caliman & Rémi Cardinael & Songchao Chen & Philippe Ciais & Domi, 2021. "Can N$_2$O emissions offset the benefits from soil organic carbon storage? [Les émissions de N2O peuvent-elles compenser les avantages du stockage du carbone organique dans le sol ?]," Post-Print hal-02958540, HAL.
    14. Stevens, Andrew W., 2018. "Review: The economics of soil health," Food Policy, Elsevier, vol. 80(C), pages 1-9.
    15. Rajsic, Predrag & Weersink, Alfons, 2008. "Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and ex ante recommendations by model, site and year," Agricultural Systems, Elsevier, vol. 97(1-2), pages 56-67, April.
    16. Swinton, Scott M. & Lupi, Frank & Robertson, G. Philip & Hamilton, Stephen K., 2007. "Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits," Ecological Economics, Elsevier, vol. 64(2), pages 245-252, December.
    17. Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
    18. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    19. John Rust, 2019. "Has Dynamic Programming Improved Decision Making?," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 833-858, August.
    20. Cai, Ruohong & Zhang, Xin & Kanter, David, "undated". "The Impact of Crop Price on Nitrous Oxide Emissions: A Dynamic Programming Approach," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170691, Agricultural and Applied Economics Association.
    21. David Boussios & Paul V. Preckel & Yigezu A. Yigezu & Prakash N. Dixit & Samia Akroush & Hatem Cheikh M'hamed & Mohamed Annabi & Aden Aw‐Hassan & Yahya Shakatreh & Omar Abdel Hadi & Ayed Al‐Abdallat &, 2019. "Modeling producer responses with dynamic programming: a case for adaptive crop management," Agricultural Economics, International Association of Agricultural Economists, vol. 50(1), pages 101-111, January.
    22. Oscar R. Burt, 1981. "Farm Level Economics of Soil Conservation in the Palouse Area of the Northwest," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(1), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Yongjie & Rabotyagov, sergey & Valcu-Lisman, Adriana, 2015. "Estimating Adoption of Cover Crops Using Preferences Revealed by a Dynamic Crop Choice Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205799, Agricultural and Applied Economics Association.
    2. Kragt, Marit E. & Robertson, Michael J., 2014. "Quantifying ecosystem services trade-offs from agricultural practices," Ecological Economics, Elsevier, vol. 102(C), pages 147-157.
    3. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    4. Deininger,Klaus W. & Ali,Daniel Ayalew & Kussul,Nataliia & Lavreniuk,Mykola & Nivievskyi,Oleg, 2020. "Using Machine Learning to Assess Yield Impacts of Crop Rotation : Combining Satellite and Statistical Data for Ukraine," Policy Research Working Paper Series 9306, The World Bank.
    5. Black, Michael A. & Ahmadiani, Mona & Bagnall, Dianna K. & Morgan, Cristine L.S. & Ogieriakhi, Macson & Woodward, Richard T., 2025. "Discrete choice experiment estimates on the value of soil health attributes in Central Texas," Ecological Economics, Elsevier, vol. 235(C).
    6. Stevens, Andrew W., 2018. "Review: The economics of soil health," Food Policy, Elsevier, vol. 80(C), pages 1-9.
    7. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    8. Hoag, Dana L., 1998. "The intertemporal impact of soil erosion on non-uniform soil profiles: A new direction in analyzing erosion impacts," Agricultural Systems, Elsevier, vol. 56(4), pages 415-429, April.
    9. Eaton, Derek J.F., 1996. "The Economics of Soil Erosion: A Model of Farm Decision-Making," Discussion Papers 24134, International Institute for Environment and Development, Environmental Economics Programme.
    10. Shively, Gerald E., 2001. "Poverty, consumption risk, and soil conservation," Journal of Development Economics, Elsevier, vol. 65(2), pages 267-290, August.
    11. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Kim, Youngho & Lichtenberg, Erik & Newburn, David A., 2024. "Payments and penalties in ecosystem services programs," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    13. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
    14. Alain Carpentier & Ibirénoyé Honoré Romaric Sodjahin & Rémy Ballot, 2022. "On the economics of crop rotation diversification. Valuing pre crop and cropping system effects and accounting for opportunity costs," Post-Print hal-04793152, HAL.
    15. Stigler, Matthieu M., "undated". "Supply response at the field-level: disentangling area and yield effects," 2018 Annual Meeting, August 5-7, Washington, D.C. 274343, Agricultural and Applied Economics Association.
    16. Sodjahin, Ibirénoyé Honoré Romaric & Féménia, Fabienne & Koutchade, Obafémi Philippe & Carpentier, Alain, "undated". "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Working Papers 320398, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    17. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    18. Ian A. Coxhead, 1995. "Economic Modeling of Land Degradation in Developing Countries," Wisconsin-Madison Agricultural and Applied Economics Staff Papers 385, Wisconsin-Madison Agricultural and Applied Economics Department.
    19. Onur Boyabatlı & Javad Nasiry & Yangfang (Helen) Zhou, 2019. "Crop Planning in Sustainable Agriculture: Dynamic Farmland Allocation in the Presence of Crop Rotation Benefits," Management Science, INFORMS, vol. 67(5), pages 2060-2076, May.
    20. Paudel, Krishna P. & Lohr, Luanne, 1998. "Dynamic Economic Analysis Of A Residue Management System In Cotton," Faculty Series 16677, University of Georgia, Department of Agricultural and Applied Economics.

    More about this item

    Keywords

    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea21:314042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.