IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/116930.html
   My bibliography  Save this article

Dynamic adaptation to resource scarcity and backstop availability: theory and application to groundwater

Author

Listed:
  • Koundouri, Phoebe
  • Christou, Christina

Abstract

In this paper we analyse the optimal management of a renewable resource (groundwater) with stock-dependent extraction cost and a backstop substitute, facing two-sector linear demands. Application to the Kiti region in Cyprus demonstrates the model’s performance and is used to test for the difference between optimal and myopic behaviour. It is found that the presence of a backstop resource diminishes the importance of optimal dynamic behaviour, whereas in the absence of backstop the optimal control solution yields a value for social welfare significantly larger than the myopic policy.

Suggested Citation

  • Koundouri, Phoebe & Christou, Christina, 2006. "Dynamic adaptation to resource scarcity and backstop availability: theory and application to groundwater," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), June.
  • Handle: RePEc:ags:aareaj:116930
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/116930
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    2. Koundouri, Phoebe, 2000. "Three approaches to measuring natural resource scarcity: theory and application to groundwater," MPRA Paper 38265, University Library of Munich, Germany.
    3. Provencher Bill & Burt Oscar, 1993. "The Externalities Associated with the Common Property Exploitation of Groundwater," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 139-158, March.
    4. Tsur, Yacov & Zemel, Amos, 2000. "R&D policies for desalination technologies," Agricultural Economics, Blackwell, vol. 24(1), pages 73-85, December.
    5. Kim, C. S. & Moore, Michael R. & Hanchar, John J. & Nieswiadomy, Michael, 1989. "A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 66-82, July.
    6. Tsur Yacov & Zemel Amos, 1995. "Uncertainty and Irreversibility in Groundwater Resource Management," Journal of Environmental Economics and Management, Elsevier, vol. 29(2), pages 149-161, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hubert Stahn & Agnès Tomini, 2015. "Rainwater Harvesting under Endogenous Capacity of Storage : a Solution to Aquifer Preservation," Annals of Economics and Statistics, GENES, issue 119-120, pages 209-234.
    2. Roumasset, James & Wada, Christopher A., 2013. "A dynamic approach to PES pricing and finance for interlinked ecosystem services: Watershed conservation and groundwater management," Ecological Economics, Elsevier, vol. 87(C), pages 24-33.
    3. Thomas Kaeo Duarte & Sittidaj Pongkijvorasi & James Roumasset & Daniel Amato & Kimberly Burnett, 2010. "Optimal Management of a Hawaiian Coastal Aquifer with Near-Shore Marine Ecological Interactions," Working Papers 201021, University of Hawaii at Manoa, Department of Economics.
    4. Elsa Martin, 2010. "Are the gains from a groundwater management policy so low?," INRA UMR CESAER Working Papers 2010/2, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.
    5. Kim, C.S. & Fuglie, Keith O. & Wallander, Steve & Wechsler, Seth, 2015. "Endogenous Technical Change and Groundwater Management: Revisiting the Gisser-Sanchez Paradox," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205350, Agricultural and Applied Economics Association;Western Agricultural Economics Association.
    6. Kahil, Mohamed Taher & Albiac, José, 2013. "Greenhouse gases mitigation policies in the agriculture of Aragon, Spain," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), issue 1, April.
    7. Roumasset James & Wada Christopher A, 2011. "Ordering Renewable Resources: Groundwater, Recycling, and Desalination," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-29, May.
    8. Pongkijvorasin, Sittidaj & Roumasset, James & Duarte, Thomas Kaeo & Burnett, Kimberly, 2010. "Renewable resource management with stock externalities: Coastal aquifers and submarine groundwater discharge," Resource and Energy Economics, Elsevier, vol. 32(3), pages 277-291, August.
    9. Hubert Stahn & Agnès Tomini, 2014. "On the Environmental Efficiency of Water Storage: The Case of a Conjunctive Use of Ground and Rainwater," AMSE Working Papers 1452, Aix-Marseille School of Economics, Marseille, France.
    10. Liu, Zhuo & Suter, Jordan F. & Messer, Kent D. & Duke, Joshua M. & Michael, Holly A., 2014. "Strategic entry and externalities in groundwater resources: Evidence from the lab," Resource and Energy Economics, Elsevier, vol. 38(C), pages 181-197.
    11. Zhang Wei-Bin, 2011. "Economic Growth And Dynamics Of Renewable Resource With Housing, Agricultural And Resource Land Use," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 6(2), pages 151-174, August.
    12. Doole, Graeme J., 2009. "A Practical Algorithm for Multiple-Phase Control Systems in Agricultural and Natural Resource Economics," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), April.
    13. James Roumasset & Christopher Wada, 2011. "Ordering Renewables: Groundwater, Recycling, and Desalination," Working Papers 201105, University of Hawaii at Manoa, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:116930. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/aaresea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.