IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2015i119-120p209-234.html
   My bibliography  Save this article

Rainwater Harvesting under Endogenous Capacity of Storage : a Solution to Aquifer Preservation

Author

Listed:
  • Hubert Stahn
  • Agnès Tomini

Abstract

This paper studies groundwater management in the presence of rainwater harvesting (RWH). We propose a two-state model that takes into account the standard dynamics of the aquifer and the dynamics of the storage capacity and we assume that the collection of rainwater reduces the natural recharge. We analyze the trade-o¤ between these two water harvesting techniques in an optimal control model. In particular, we show that when these techniques are pure substitutes, the development of RWH leads in the long run to a depletion of the water table even if pumping is reduced. This result is illustrated by a numerical application for the Pecos river Bassin (New Mexico, USA).

Suggested Citation

  • Hubert Stahn & Agnès Tomini, 2015. "Rainwater Harvesting under Endogenous Capacity of Storage : a Solution to Aquifer Preservation," Annals of Economics and Statistics, GENES, issue 119-120, pages 209-234.
  • Handle: RePEc:adr:anecst:y:2015:i:119-120:p:209-234
    DOI: 10.15609/annaeconstat2009.119-120.209
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/10.15609/annaeconstat2009.119-120.209
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phoebe Koundouri & Christina Christou, 2006. "Dynamic adaptation to resource scarcity and backstop availability: theory and application to groundwater ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 227-245, June.
    2. Christian Lehmann & Raquel Tsukada & Acácio Lourete, 2010. "Low-Cost Technologies Towards Achieving the Millennium Development Goals: The Case of Rainwater Harvesting," Policy Research Brief 12, International Policy Centre for Inclusive Growth.
    3. Tsur, Yacov & Graham-Tomasi, Theodore, 1991. "The buffer value of groundwater with stochastic surface water supplies," Journal of Environmental Economics and Management, Elsevier, vol. 21(3), pages 201-224, November.
    4. Santiago Rubio & Begoña Casino, 2003. "Strategic Behavior and Efficiency in the Common Property Extraction of Groundwater," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 73-87, September.
    5. Amigues, Jean-Pierre & Favard, Pascal & Gaudet, Gerard & Moreaux, Michel, 1998. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute Is Limited," Journal of Economic Theory, Elsevier, vol. 80(1), pages 153-170, May.
    6. Gisser, Micha, 1983. "Groundwater: Focusing on the Real Issue," Journal of Political Economy, University of Chicago Press, vol. 91(6), pages 1001-1027, December.
    7. Engelbert Dockner & Gustav Feichtinger, 1991. "On the optimality of limit cycles in dynamic economic systems," Journal of Economics, Springer, vol. 53(1), pages 31-50, February.
    8. Darrell Krulce & James A. Roumasset & Tom Wilson, 1997. "Optimal Management of a Renewable and Replaceable Resource: The Case of Coastal Groundwater," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(4), pages 1218-1228.
    9. Bill Provencher, 1993. "A Private Property Rights Regime to Replenish a Groundwater Aquifer," Land Economics, University of Wisconsin Press, vol. 69(4), pages 325-340.
    10. Hubert Stahn & Agnès Tomini, 2010. "A drop of rainwater against a drop of groundwater: does rainwater harvesting really allow us to spare Groundwater?," Working Papers halshs-00443667, HAL.
    11. Knapp Keith C. & Olson Lars J., 1995. "The Economics of Conjunctive Groundwater Management with Stochastic Surface Supplies," Journal of Environmental Economics and Management, Elsevier, vol. 28(3), pages 340-356, May.
    12. Saak, Alexander E. & Peterson, Jeffrey M., 2007. "Groundwater use under incomplete information," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 214-228, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hubert Stahn & Agnes Tomini, 2014. "On the Environmental Efficiency of Water Storage: The Case of a Conjunctive Use of Ground and Rainwater," Working Papers halshs-01083461, HAL.
    2. Stahn, Hubert & Tomini, Agnès, 2017. "On conjunctive management of groundwater and rainwater," Resource and Energy Economics, Elsevier, vol. 49(C), pages 186-200.
    3. Raphaël Soubeyran & Mabel Tidball & Agnes Tomini & Katrin Erdlenbruch, 2015. "Rainwater Harvesting and Groundwater Conservation: When Endogenous Heterogeneity Matters," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 19-34, September.
    4. Katrin Erdlenbruch & Raphael Soubeyran & Mabel Tidball & Agnes Tomini, 2012. "(Anti-)Coordination Problems with Scarce Water Resources," Working Papers 12-28, LAMETA, Universtiy of Montpellier, revised Sep 2012.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phoebe Koundouri, "undated". "Current issues in the economics of groundwater resource management," DEOS Working Papers 0402, Athens University of Economics and Business.
    2. Raphaël Soubeyran & Mabel Tidball & Agnes Tomini & Katrin Erdlenbruch, 2015. "Rainwater Harvesting and Groundwater Conservation: When Endogenous Heterogeneity Matters," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 19-34, September.
    3. Katrin Erdlenbruch & Raphael Soubeyran & Mabel Tidball & Agnes Tomini, 2012. "(Anti-)Coordination Problems with Scarce Water Resources," Working Papers 12-28, LAMETA, Universtiy of Montpellier, revised Sep 2012.
    4. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    5. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    6. Pongkijvorasin, Sittidaj & Roumasset, James & Duarte, Thomas Kaeo & Burnett, Kimberly, 2010. "Renewable resource management with stock externalities: Coastal aquifers and submarine groundwater discharge," Resource and Energy Economics, Elsevier, vol. 32(3), pages 277-291, August.
    7. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    8. Nathaniel H Merrill & Todd Guilfoos, 2018. "Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 220-238.
    9. Stahn, Hubert & Tomini, Agnès, 2017. "On conjunctive management of groundwater and rainwater," Resource and Energy Economics, Elsevier, vol. 49(C), pages 186-200.
    10. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    11. Alain Ayong Le Kama & Agnès Tomini, 2012. "Water Conservation versus Soil Salinity Control," EconomiX Working Papers 2012-8, University of Paris Nanterre, EconomiX.
    12. James Roumasset & Christopher Wada, 2012. "The Economics of Groundwater," Working Papers 201211, University of Hawaii at Manoa, Department of Economics.
    13. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    14. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    15. Thomas Kaeo Duarte & Sittidaj Pongkijvorasin & James Roumasset & Daniel Amato & Kimberly Burnett, 2010. "Optimal Management of a Hawaiian Coastal Aquifer with Near-Shore Marine Ecological Interactions," Working Papers 2010-08, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    16. Marita Laukkanen & Phoebe Koundouri, "undated". "Competition versus coopertion in groundwater extraction: A stochastic framework with heteregoneous agents," DEOS Working Papers 0606, Athens University of Economics and Business.
    17. Nasim, Sanval & Helfand, Steven & Dinar, Ariel, 2020. "Groundwater management under heterogeneous land tenure arrangements," Resource and Energy Economics, Elsevier, vol. 62(C).
    18. Msangi, Siwa, 2005. "Measuring the Gains to Groundwater Management with Recursive Utility," 2005 Annual meeting, July 24-27, Providence, RI 19212, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. repec:hae:wpaper:2012-5 is not listed on IDEAS
    20. Rubio, Santiago J. & Casino, Begona, 2001. "Competitive versus efficient extraction of a common property resource: The groundwater case," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1117-1137, August.
    21. Kim, C.S. & Fuglie, Keith O. & Wallander, Steve & Wechsler, Seth, 2015. "Endogenous Technical Change and Groundwater Management: Revisiting the Gisser-Sanchez Paradox," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205350, Agricultural and Applied Economics Association.

    More about this item

    JEL classification:

    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2015:i:119-120:p:209-234. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.