IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v100y2018i1p220-238..html
   My bibliography  Save this article

Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality

Author

Listed:
  • Nathaniel H Merrill
  • Todd Guilfoos

Abstract

We introduce a model that incorporates two important elements to estimating welfare gains from groundwater management: stochasticity and a spatial stock externality. We estimate welfare gains resulting from optimal management under uncertainty as well as a gradual stock externality that produces the dynamics of a large aquifer being slowly exhausted. This groundwater model imposes an important aspect of a depletable natural resource without the extreme assumption of complete exhaustion that is necessary in a traditional single cell (bathtub) model of groundwater extraction. Using dynamic programming, we incorporate and compare stochasticity for both an independent and identically distributed as well as a Markov chain process for annual rainfall. We find that the spatial depletion of the aquifer is significant to welfare gains for a parameterization of a section of the Ogallala Aquifer in Kansas, ranging from 2.9% to 3.01%, which is larger than those found previously over the region. Surprisingly, the inclusion of stochasticity in rainfall increases welfare gains only slightly.

Suggested Citation

  • Nathaniel H Merrill & Todd Guilfoos, 2018. "Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 220-238.
  • Handle: RePEc:oup:ajagec:v:100:y:2018:i:1:p:220-238.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ajae/aax057
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsur, Yacov & Graham-Tomasi, Theodore, 1991. "The buffer value of groundwater with stochastic surface water supplies," Journal of Environmental Economics and Management, Elsevier, vol. 21(3), pages 201-224, November.
    2. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    3. Lee, Kun C. & Short, Cameron & Heady, Earl O., 1981. "Optimal Groundwater Mining In The Ogallala Aquifer: Estimation Of Economic Losses And Excessive Depletion Due To Commonality," 1981 Annual Meeting, July 26-29, Clemson, South Carolina 279261, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Hendricks, Nathan P. & Peterson, Jeffrey M., 2012. "Fixed Effects Estimation of the Intensive and Extensive Margins of Irrigation Water Demand," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), pages 1-19, April.
    5. Saak, Alexander E. & Peterson, Jeffrey M., 2007. "Groundwater use under incomplete information," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 214-228, September.
    6. Kim, C. S. & Moore, Michael R. & Hanchar, John J. & Nieswiadomy, Michael, 1989. "A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 66-82, July.
    7. Michael Nieswiadomy, 1985. "The Demand for Irrigation Water in the High Plains of Texas, 1957–80," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(3), pages 619-626.
    8. Eric C. Edwards, 2016. "What Lies Beneath? Aquifer Heterogeneity and the Economics of Groundwater Management," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 453-491.
    9. Knapp Keith C. & Olson Lars J., 1995. "The Economics of Conjunctive Groundwater Management with Stochastic Surface Supplies," Journal of Environmental Economics and Management, Elsevier, vol. 28(3), pages 340-356, May.
    10. Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2010. "On the spatial nature of the groundwater pumping externality," Resource and Energy Economics, Elsevier, vol. 32(2), pages 154-164, April.
    11. Kun C. Lee & Cameron Short & Earl O. Heady, 1981. "Optimal Groundwater Mining in the Ogallala Aquifer: Estimation of Economic Losses and Excessive Depletion Due to Commonality," Center for Agricultural and Rural Development (CARD) Publications 81-wp1, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    12. repec:ags:jrapmc:122312 is not listed on IDEAS
    13. Phoebe Koundouri & Christina Christou, 2006. "Dynamic adaptation to resource scarcity and backstop availability: theory and application to groundwater ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 227-245, June.
    14. Richard Hornbeck & Pinar Keskin, 2014. "The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 190-219, January.
    15. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    16. Palazzo, Amanda & Brozović, Nicholas, 2014. "The role of groundwater trading in spatial water management," Agricultural Water Management, Elsevier, vol. 145(C), pages 50-60.
    17. Marcus Wijnen & Benedicte Augeard & Bradley Hiller & Christopher Ward & Patrick Huntjens, 2012. "Managing the Invisible : Understanding and Improving Groundwater Governance," World Bank Publications - Reports 17228, The World Bank Group.
    18. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    2. Antoci, Angelo & Iannucci, Gianluca & Rocchi, Benedetto & Ticci, Elisa, 2023. "The land allocation game: Externalities and evolutionary competition," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 124-133.
    3. Jesus Arellano‐Gonzalez & Frances C. Moore, 2020. "Intertemporal Arbitrage of Water and Long‐Term Agricultural Investments: Drought, Groundwater Banking, and Perennial Cropping Decisions in California," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1368-1382, October.
    4. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    5. Lee, Juhee & Hendricks, Nathan P., 2022. "Crop Choice Decisions in Response to Soil Salinization on Irrigated Land in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322602, Agricultural and Applied Economics Association.
    6. Eric C. Edwards & Todd Guilfoos, 2021. "The Economics of Groundwater Governance Institutions across the Globe," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1571-1594, December.
    7. Perez-Quesada, Gabriela & Hendricks, Nathan P. & Steward, David R., 2020. "Quantifying the economic costs of High Plains Aquifer depletion," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304225, Agricultural and Applied Economics Association.
    8. Sayre, Susan Stratton & Taraz, Vis, 2019. "Groundwater depletion in India: Social losses from costly well deepening," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 85-100.
    9. Nasim, Sanval & Helfand, Steven & Dinar, Ariel, 2020. "Groundwater management under heterogeneous land tenure arrangements," Resource and Energy Economics, Elsevier, vol. 62(C).
    10. Reinelt, Peter, 2020. "Spatial-dynamic seawater intrusion and pumping cost externalities in a confined aquifer," Resource and Energy Economics, Elsevier, vol. 59(C).
    11. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    12. Bruno, Ellen & Van Dop Sears, Molly & Hanemann, Michael, 2020. "Groundwater Quality and Crop Choice: Implications for the Cost of Seawater Intrusion," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304340, Agricultural and Applied Economics Association.
    13. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    14. Lee, Juhee & Hendricks, Nathan, 2022. "Irrigation Decisions in Response to Groundwater Salinity in Kansas," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasim, Sanval & Helfand, Steven & Dinar, Ariel, 2020. "Groundwater management under heterogeneous land tenure arrangements," Resource and Energy Economics, Elsevier, vol. 62(C).
    2. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    3. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    4. Quintana Ashwell, Nicolas E. & Peterson, Jeffrey M. & Hendricks, Nathan P., 2018. "Optimal groundwater management under climate change and technical progress," Resource and Energy Economics, Elsevier, vol. 51(C), pages 67-83.
    5. Phoebe Koundouri, 2003. "Potential for groundwater management: Gisser-Sanchez effect reconsidered," DEOS Working Papers 0307, Athens University of Economics and Business.
    6. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    7. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    8. Sayre, Susan Stratton & Taraz, Vis, 2019. "Groundwater depletion in India: Social losses from costly well deepening," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 85-100.
    9. Drysdale, Krystal M. & Hendricks, Nathan P., 2018. "Adaptation to an irrigation water restriction imposed through local governance," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 150-165.
    10. Rouhi Rad, Mani & Brozović, Nicholas & Foster, Timothy & Mieno, Taro, 2020. "Effects of instantaneous groundwater availability on irrigated agriculture and implications for aquifer management," Resource and Energy Economics, Elsevier, vol. 59(C).
    11. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    12. James Roumasset & Christopher Wada, 2012. "The Economics of Groundwater," Working Papers 201211, University of Hawaii at Manoa, Department of Economics.
    13. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    14. Smith, Steven M., 2018. "Economic incentives and conservation: Crowding-in social norms in a groundwater commons," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 147-174.
    15. Hubert Stahn & Agnès Tomini, 2015. "Rainwater Harvesting under Endogenous Capacity of Storage : a Solution to Aquifer Preservation," Annals of Economics and Statistics, GENES, issue 119-120, pages 209-234.
    16. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    17. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    18. Eric C. Edwards & Todd Guilfoos, 2021. "The Economics of Groundwater Governance Institutions across the Globe," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1571-1594, December.
    19. Marita Laukkanen & Phoebe Koundouri, 2006. "Competition versus coopertion in groundwater extraction: A stochastic framework with heteregoneous agents," DEOS Working Papers 0606, Athens University of Economics and Business.
    20. Ayres, Andrew B. & Edwards, Eric C. & Libecap, Gary D., 2018. "How transaction costs obstruct collective action: The case of California's groundwater," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 46-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:100:y:2018:i:1:p:220-238.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.