IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v19y1998i1-2p181-191.html
   My bibliography  Save this article

Water conveyance, return flows and technology choice

Author

Listed:
  • Chieko Umetsu
  • Ujjayant Chakravorty

Abstract

This paper develops a spatial conjunctive use model of an irrigation project in which the regulatory agency determines investments in the centralized distribution system and farmers decide the level of on‐farm technology in the field. Irrigation return flows are assumed to recharge the groundwater aquifer. It is shown that there is specialization in production with upstream farmers using surface water and downstream farmers pumping from the aquifer. An empirical model suggests that the proportion of return flows has a significant effect on the level of investments in water distribution as well as in the field. For example, if return flows are relatively high, it may be optimal to allow for significant water losses from the canal and the fields. It suggests that the project pricing and technology adoption policies may need to be tempered by consideration of the basinwide impacts of water diversions.

Suggested Citation

  • Chieko Umetsu & Ujjayant Chakravorty, 1998. "Water conveyance, return flows and technology choice," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 181-191, September.
  • Handle: RePEc:bla:agecon:v:19:y:1998:i:1-2:p:181-191
    DOI: 10.1111/j.1574-0862.1998.tb00525.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1574-0862.1998.tb00525.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1574-0862.1998.tb00525.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Seckler, D., 1996. "The new era of water resources management: from \dry\ to \wet\ water savings," IWMI Research Reports H018206, International Water Management Institute.
    2. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    3. Kim, C. S. & Moore, Michael R. & Hanchar, John J. & Nieswiadomy, Michael, 1989. "A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 66-82, July.
    4. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    5. Chakravorty Ujjayant & Hochman Eithan & Zilberman David, 1995. "A Spatial Model of Optimal Water Conveyance," Journal of Environmental Economics and Management, Elsevier, vol. 29(1), pages 25-41, July.
    6. David Zilberman & Neal Macdougall & Farhed Shah, 1994. "Changes In Water Allocation Mechanisms For California Agriculture," Contemporary Economic Policy, Western Economic Association International, vol. 12(1), pages 122-133, January.
    7. Ujjayant Chakravorty & James Roumasset, 1991. "Efficient Spatial Allocation of Irrigation Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(1), pages 165-173.
    8. Gisser, Micha, 1983. "Groundwater: Focusing on the Real Issue," Journal of Political Economy, University of Chicago Press, vol. 91(6), pages 1001-1027, December.
    9. Rosegrant, Mark W. & Binswanger, Hans P., 1994. "Markets in tradable water rights: Potential for efficiency gains in developing country water resource allocation," World Development, Elsevier, vol. 22(11), pages 1613-1625, November.
    10. Negri, Donald H. & Brooks, Douglas H., 1990. "Determinants Of Irrigation Technology Choice," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-12, December.
    11. Rosegrant, Mark W. & Schleyer, Renato Gazmuri & Yadav, Satya N., 1995. "Water policy for efficient agricultural diversification: market-based approaches," Food Policy, Elsevier, vol. 20(3), pages 203-223, June.
    12. Micha Gisser & Abraham Mercado, 1973. "Economic Aspects of Ground Water Resources and Replacement Flows in Semiarid Agricultural Areas," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 55(3), pages 461-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Aaron Hrozencik & Nicholas A. Potter & Steven Wallander, 2022. "The Cost-Effectiveness of Irrigation Canal Lining and Piping in the Western United States," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 107-134, National Bureau of Economic Research, Inc.
    2. Umetsu, Chieko, 2002. "The Optimal Dynamic Model of Conjunctive Water Use," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 4.
    3. Fang, Lan & Nuppenau, Ernst-August, 2006. "Application of a Spatial Water Model in a Chinese Watershed," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25437, International Association of Agricultural Economists.
    4. Chakravorty, Ujjayant & Umetsu, Chieko, 2003. "Basinwide water management: a spatial model," Journal of Environmental Economics and Management, Elsevier, vol. 45(1), pages 1-23, January.
    5. Chant, Lindsay & McDonald, Scott & Verschoor, Arjan, 2004. "The Role of the 1994-95 Coffee Boom in Uganda's Recovery," Conference papers 331235, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2004. "Measuring The Gains From Management Of Spatially Heterogeneous Resources: The Case Of Groundwater," 2004 Annual meeting, August 1-4, Denver, CO 20240, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    2. Chakravorty, Ujjayant & Umetsu, Chieko, 2003. "Basinwide water management: a spatial model," Journal of Environmental Economics and Management, Elsevier, vol. 45(1), pages 1-23, January.
    3. Umetsu, Chieko, 2002. "The Optimal Dynamic Model of Conjunctive Water Use," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 4.
    4. Glenn D. Schaible & C. S. Kim & Marcel P. Aillery, 2010. "Dynamic Adjustment of Irrigation Technology/Water Management in Western U.S. Agriculture: Toward a Sustainable Future," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 433-461, December.
    5. Ray, Isha & Williams, Jeffrey, 2002. "Locational asymmetry and the potential for cooperation on a canal," Journal of Development Economics, Elsevier, vol. 67(1), pages 129-155, February.
    6. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    7. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    8. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    9. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    10. Eiji Satoh, 2011. "Nontransferable Water Rights and Technical Inefficiency in the Japanese Water Supply Industry," Global COE Hi-Stat Discussion Paper Series gd11-211, Institute of Economic Research, Hitotsubashi University.
    11. Moreno, Georgina & Sunding, David L., 2003. "Simultaneous Estimation Of Technology Adoption And Land Allocation," 2003 Annual meeting, July 27-30, Montreal, Canada 22134, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Hellegers, Petra & Zilberman, David & van Ierland, Ekko, 2001. "Dynamics of agricultural groundwater extraction," Ecological Economics, Elsevier, vol. 37(2), pages 303-311, May.
    13. Chatterjee, Diti & Dinar, Ariel & González-Rivera, Gloria, 2019. "Impact of Agricultural Extension on Irrigated Agriculture Production and Water Use in California," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2019.
    14. Ray, I., 2007. "Get the prices right: a model of water prices and irrigation efficiency in Maharashtra, India," IWMI Books, Reports H040603, International Water Management Institute.
    15. Varela-Ortega, Consuelo & M. Sumpsi, Jose & Garrido, Alberto & Blanco, Maria & Iglesias, Eva, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, Blackwell, vol. 19(1-2), pages 193-202, September.
    16. Ioslovich, Ilya & Gutman, Per-Olof, 2001. "A model for the global optimization of water prices and usage for the case of spatially distributed sources and consumers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(4), pages 347-356.
    17. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    18. Phoebe Koundouri, 2003. "Potential for groundwater management: Gisser-Sanchez effect reconsidered," DEOS Working Papers 0307, Athens University of Economics and Business.
    19. Rosegrant, Mark W. & Perez, Nicostrato D., 1997. "Water resources development in Africa: a review and synthesis of issues, potentials, and strategies for the future," EPTD discussion papers 28, International Food Policy Research Institute (IFPRI).
    20. C.S. Kim & Glenn Schaible, 2000. "Economic Benefits Resulting From Irrigation Water Use: Theory and an Application to Groundwater Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 17(1), pages 73-87, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:19:y:1998:i:1-2:p:181-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.