IDEAS home Printed from
   My bibliography  Save this item

Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

Cited by:

  1. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
  2. Wang, Kun & Fu, Xiaowen & Luo, Meifeng, 2015. "Modeling the impacts of alternative emission trading schemes on international shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 35-49.
  3. Alonso, G. & Benito, A. & Lonza, L. & Kousoulidou, M., 2014. "Investigations on the distribution of air transport traffic and CO2 emissions within the European Union," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 85-93.
  4. Sheu, Jiuh-Biing, 2014. "Airline ambidextrous competition under an emissions trading scheme – A reference-dependent behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 115-145.
  5. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
  6. Lindstad, Haakon & Jullumstrø, Egil & Sandaas, Inge, 2013. "Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion," Energy Policy, Elsevier, vol. 59(C), pages 341-349.
  7. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
  8. Adler, Nicole & Martini, Gianmaria & Volta, Nicola, 2013. "Measuring the environmental efficiency of the global aviation fleet," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 82-100.
  9. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
  10. Kim, Yohan & Lee, Joosung & Ahn, Jaemyung, 2019. "Innovation towards sustainable technologies: A socio-technical perspective on accelerating transition to aviation biofuel," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 317-329.
  11. Winchester, Niven & McConnachie, Dominic & Wollersheim, Christoph & Waitz, Ian A., 2013. "Economic and emissions impacts of renewable fuel goals for aviation in the US," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 116-128.
  12. Hu, Rong & Xiao, Yi-bin & Jiang, Changmin, 2018. "Jet fuel hedging, operational fuel efficiency improvement and carbon tax," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 103-123.
  13. Sungwook Yoon & Sukjae Jeong, 2016. "Carbon Emission Mitigation Potentials of Different Policy Scenarios and Their Effects on International Aviation in the Korean Context," Sustainability, MDPI, Open Access Journal, vol. 8(11), pages 1-1, November.
  14. Jiuh-Biing Sheu & Fang Li, 2014. "Market Competition and Greening Transportation of Airlines Under the Emission Trading Scheme: A Case of Duopoly Market," Transportation Science, INFORMS, vol. 48(4), pages 684-694, November.
  15. Karsten Kieckhäfer & Gunnar Quante & Christoph Müller & Thomas Stefan Spengler & Matthias Lossau & Wolfgang Jonas, 2018. "Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO 2 Emissions from Aviation," Energies, MDPI, Open Access Journal, vol. 11(1), pages 1-1, January.
  16. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
  17. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
  18. Mayer, Robert & Ryley, Tim & Gillingwater, David, 2015. "Eco-positioning of airlines: Perception versus actual performance," Journal of Air Transport Management, Elsevier, vol. 44, pages 82-89.
  19. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
  20. van Cranenburgh, S. & Chorus, C.G. & van Wee, B., 2014. "Vacation behaviour under high travel cost conditions – A stated preference of revealed preference approach," Tourism Management, Elsevier, vol. 43(C), pages 105-118.
  21. Cui, Qiang, 2019. "Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA," Energy, Elsevier, vol. 180(C), pages 763-771.
  22. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-1, April.
  23. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
  24. David Rees & Janet Stephenson & Debbie Hopkins & Adam Doering, 2017. "Exploring stability and change in transport systems: combining Delphi and system dynamics approaches," Transportation, Springer, vol. 44(4), pages 789-805, July.
  25. Jean-Marc Roda & Maxime Goralski & Anthony Benoist & Anaphel Baptiste & Valentine Boudjema & Theodoros Galanos & Marine Georget & Jean-Eudes Hévin & Simon Lavergne & Frédéric Eychenne & Kan Ern Liew &, 2015. "Sustainability of biojet-fuel in Malaysia," Selected Books, CIRAD, Forest department, UPR40, edition 1, volume 1, number 17 edited by Jean-Marc Roda.
  26. Miyoshi, Chikage, 2014. "Assessing the equity impact of the European Union Emission Trading Scheme on an African airline," Transport Policy, Elsevier, vol. 33(C), pages 56-64.
  27. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-1, November.
  28. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
  29. Winchester, Niven & Malina, Robert & Staples, Mark D. & Barrett, Steven R.H., 2015. "The impact of advanced biofuels on aviation emissions and operations in the U.S," Energy Economics, Elsevier, vol. 49(C), pages 482-491.
  30. Becken, Susanne & Carmignani, Fabrizio, 2020. "Are the current expectations for growing air travel demand realistic?," Annals of Tourism Research, Elsevier, vol. 80(C).
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.