IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i10p1077-1091.html
   My bibliography  Save this article

Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation

Author

Listed:
  • Sgouridis, Sgouris
  • Bonnefoy, Philippe A.
  • Hansman, R. John

Abstract

With increasing demand for air transportation worldwide and decreasing marginal fuel efficiency improvements, the contribution of aviation to climate change relative to other sectors is projected to increase in the future. As a result, growing public and political pressures are likely to further target air transportation to reduce its greenhouse gas emissions. The key challenges faced by policy makers and air transportation industry stakeholders is to reduce aviation greenhouse gas emissions while sustaining mobility for passengers and time-sensitive cargo as well as meeting future demand for air transportation in developing and emerging countries. This paper examines five generic policies for reducing the emissions of commercial aviation; (1) technological efficiency improvements, (2) operational efficiency improvements, (3) use of alternative fuels, (4) demand shift and (5) carbon pricing (i.e. market-based incentives). In order to evaluate the impacts of these policies on total emissions, air transport mobility, airfares and airline profitability, a system dynamics modeling approach was used. The Global Aviation Industry Dynamics (GAID) model captures the systemic interactions and the delayed feedbacks in the air transportation system and allows scenarios testing through simulations. For this analysis, a set of 34 scenarios with various levels of aggressiveness along the five generic policies were simulated and tested. It was found that no single policy can maintain emissions levels steady while increasing projected demand for air transportation. Simulation results suggest that a combination of the proposed policies does produce results that are close to a “weak” sustainability definition of increasing supply to meet new demand needs while maintaining constant or increasing slightly emissions levels. A combination of policies that includes aggressive levels of technological and operations efficiency improvements, use of biofuels along with moderate levels of carbon pricing and short-haul demand shifts efforts achieves a 140% increase in capacity in 2024 over 2004 while only increasing emissions by 20% over 2004. In addition, airline profitability is moderately impacted (10% reduction) compared to other scenarios where profitability is reduced by over 50% which pose a threat to necessary investments and the implementation of mitigating measures to reduce CO2 emissions. This study has shown that an approach based on a portfolio of mitigating measures and policies spanning across technology and operational improvements, use of biofuels, demand shift and carbon pricing is required to transition the air transportation industry close to an operating point of environmental and mobility sustainability.

Suggested Citation

  • Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:10:p:1077-1091
    DOI: 10.1016/j.tra.2010.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856410000583
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    2. Ribeiro, Suzana K & Kobayashi, Shigeki & Beuthe, Michel & Gasca, Jorge & Greene, David & Lee, David S. & Muromachi, Yasunori & Newton, Peter J. & Plotkin, Steven & Sperling, Daniel & Wit, Ron & Zhou, , 2007. "Transportation and its Infrastructure," Institute of Transportation Studies, Working Paper Series qt98m5t1rv, Institute of Transportation Studies, UC Davis.
    3. Abbas, Khaled A. & Bell, Michael G. H., 1994. "System dynamics applicability to transportation modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 373-390, September.
    4. Scheraga, Carl A., 2004. "Operational efficiency versus financial mobility in the global airline industry: a data envelopment and Tobit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 383-404, June.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:10:p:1077-1091. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.