IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v71y2014icp188-202.html
   My bibliography  Save this article

A multi-paradigm approach to system dynamics modeling of intercity transportation

Author

Listed:
  • Lewe, J.-H.
  • Hivin, L.F.
  • Mavris, D.N.

Abstract

The complexity of the transportation system calls for a holistic solution approach that employs multiple modeling paradigms such as agent-based modeling and system dynamics. Various techniques for combining these paradigms are explored and logically classified, which helps guide hybrid modeling. A system dynamics model for multimodal intercity transportation is created, which integrates socioeconomic factors, mode performance, aggregated demand and capacity. The model is calibrated against a set of data points from an existing agent-based model. An effective inheritance of the proven predictive power of the agent-based model is demonstrated by reproducing the historic aviation demand with sufficient accuracy.

Suggested Citation

  • Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
  • Handle: RePEc:eee:transe:v:71:y:2014:i:c:p:188-202
    DOI: 10.1016/j.tre.2014.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554514001653
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Liya & Huang, Shan & Sadek, Adel W., 2013. "A novel agent-based transportation model of a university campus with application to quantifying the environmental cost of parking search," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 86-104.
    2. Yao, Enjian & Morikawa, Takayuki, 2005. "A study of on integrated intercity travel demand model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 367-381, May.
    3. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    4. Vincenot, Christian Ernest & Giannino, Francesco & Rietkerk, Max & Moriya, Kazuyuki & Mazzoleni, Stefano, 2011. "Theoretical considerations on the combined use of System Dynamics and individual-based modeling in ecology," Ecological Modelling, Elsevier, vol. 222(1), pages 210-218.
    5. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    6. Abbas, Khaled A. & Bell, Michael G. H., 1994. "System dynamics applicability to transportation modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 373-390, September.
    7. Haldenbilen, Soner, 2006. "Fuel price determination in transportation sector using predicted energy and transport demand," Energy Policy, Elsevier, vol. 34(17), pages 3078-3086, November.
    8. Liu, Shiyong & Triantis, Konstantinos P. & Sarangi, Sudipta, 2010. "A framework for evaluating the dynamic impacts of a congestion pricing policy for a transportation socioeconomic system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 596-608, October.
    9. Golob, Thomas F. & Beckmann, Martin J. & Zahavi, Yacov, 1981. "A utility-theory travel demand model incorporating travel budgets," Transportation Research Part B: Methodological, Elsevier, vol. 15(6), pages 375-389, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Furkan Oztanriseven & Heather Nachtmann, 2020. "Modeling dynamic behavior of navigable inland waterways," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(2), pages 173-195, June.
    2. Fontoura, Wlisses Bonelá & Chaves, Gisele de Lorena Diniz & Ribeiro, Glaydston Mattos, 2019. "The Brazilian urban mobility policy: The impact in São Paulo transport system using system dynamics," Transport Policy, Elsevier, vol. 73(C), pages 51-61.
    3. Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
    4. Wang, Jidong & Wu, Jiahui & Che, Yanbo, 2019. "Agent and system dynamics-based hybrid modeling and simulation for multilateral bidding in electricity market," Energy, Elsevier, vol. 180(C), pages 444-456.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Liu & Dong Mu & Daqing Gong, 2017. "Eliminating Overload Trucking via a Modal Shift to Achieve Intercity Freight Sustainability: A System Dynamics Approach," Sustainability, MDPI, Open Access Journal, vol. 9(3), pages 1-24, March.
    2. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Yunqiang Xue & Hongzhi Guan & Jonathan Corey & Bing Zhang & Hai Yan & Yan Han & Huanmei Qin, 2017. "Transport Emissions and Energy Consumption Impacts of Private Capital Investment in Public Transport," Sustainability, MDPI, Open Access Journal, vol. 9(10), pages 1-19, October.
    4. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    5. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    6. Marti-Henneberg, Jordi, 2015. "Attracting travellers to the high-speed train: a methodology for comparing potential demand between stations," Journal of Transport Geography, Elsevier, vol. 42(C), pages 145-156.
    7. Golob, Thomas F., 2000. "A simultaneous model of household activity participation and trip chain generation," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 355-376, June.
    8. Kockelman, Kara Maria, 2001. "A model for time- and budget-constrained activity demand analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 255-269, March.
    9. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    10. D. Prieto & T. K. Das, 2016. "An operational epidemiological model for calibrating agent-based simulations of pandemic influenza outbreaks," Health Care Management Science, Springer, vol. 19(1), pages 1-19, March.
    11. Santos, Mário & Bastos, Rita & Cabral, João Alexandre, 2013. "Converting conventional ecological datasets in dynamic and dynamic spatially explicit simulations: Current advances and future applications of the Stochastic Dynamic Methodology (StDM)," Ecological Modelling, Elsevier, vol. 258(C), pages 91-100.
    12. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    13. Zhang, Fangni & Yang, Hai & Liu, Wei, 2014. "The Downs–Thomson Paradox with responsive transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 244-263.
    14. Koopmans, Carl & Groot, Wim & Warffemius, Pim & Annema, Jan Anne & Hoogendoorn-Lanser, Sascha, 2013. "Measuring generalised transport costs as an indicator of accessibility changes over time," Transport Policy, Elsevier, vol. 29(C), pages 154-159.
    15. Tesfatsion, Leigh, 2017. "Modeling Economic Systems as Locally-Constructive Sequential Games," ISU General Staff Papers 201704300700001022, Iowa State University, Department of Economics.
    16. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    18. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, Open Access Journal, vol. 12(7), pages 1-17, April.
    19. Xia, Jianhong(Cecilia) & Nesbitt, Joshua & Daley, Rebekah & Najnin, Arfanara & Litman, Todd & Tiwari, Surya Prasad, 2016. "A multi-dimensional view of transport-related social exclusion: A comparative study of Greater Perth and Sydney," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 205-221.
    20. Feng Xie & David Levinson, 2009. "Jurisdictional Control and Network Growth," Networks and Spatial Economics, Springer, vol. 9(3), pages 459-483, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:71:y:2014:i:c:p:188-202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.