IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i3p398-d92447.html
   My bibliography  Save this article

Eliminating Overload Trucking via a Modal Shift to Achieve Intercity Freight Sustainability: A System Dynamics Approach

Author

Listed:
  • Pei Liu

    (Department of Logistics Management, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
    Department of Logistics Management, School of Business, Shandong University at Weihai, Weihai 264209, China)

  • Dong Mu

    (Department of Logistics Management, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Daqing Gong

    (Department of Management Science and Engineering, School of Economics and Management, Tsinghua University, Beijing 100084, China)

Abstract

The Chinese government has long been preoccupied with solving the problem of overloaded trucking in intercity freight systems (IFSs). The enforcement of prohibiting overloaded trucking, which enhances environmental and social performance of sustainability, has not progressed well, as it raises transport costs and lowers economic performance, and cannot improve the overall performance of sustainability. It is, thus, necessary to find a way to eliminate overloaded trucking without undermining the overall performance of sustainability. A modal shift is a potential way to achieve freight sustainability, by encouraging greater use of more efficient transport modes. This paper develops a system dynamics model to perform a long-term evaluation of alternative modal shift policies with trucks meeting the statutory limit, and then identified effective policies, whereby the increasing sustainability of IFSs could be achieved. The proposed model was applied to a specific case in China. The results show that the effective modal shift policy is to construct a Class I railway to shift freight away from highways. A discussion is then proposed, based on an analysis of different parameter setting scenarios regarding more general situations.

Suggested Citation

  • Pei Liu & Dong Mu & Daqing Gong, 2017. "Eliminating Overload Trucking via a Modal Shift to Achieve Intercity Freight Sustainability: A System Dynamics Approach," Sustainability, MDPI, vol. 9(3), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:398-:d:92447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/3/398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/3/398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amanda Sosa & Radomir Klvac & Enda Coates & Tom Kent & Ger Devlin, 2015. "Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors," Sustainability, MDPI, vol. 7(3), pages 1-14, March.
    2. Goldman, Todd & Gorham, Roger, 2006. "Sustainable urban transport: Four innovative directions," Technology in Society, Elsevier, vol. 28(1), pages 261-273.
    3. Cao, Jin & Menendez, Monica, 2015. "System dynamics of urban traffic based on its parking-related-states," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 718-736.
    4. Liu, Shiyong & Triantis, Konstantinos P. & Sarangi, Sudipta, 2010. "A framework for evaluating the dynamic impacts of a congestion pricing policy for a transportation socioeconomic system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 596-608, October.
    5. Raymond Fisman & Jing Shi & Yongxiang Wang & Rong Xu, 2018. "Social Ties and Favoritism in Chinese Science," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 1134-1171.
    6. Levi Vermote & Cathy Macharis & Koen Putman, 2013. "A Road Network for Freight Transport in Flanders: Multi-Actor Multi-Criteria Assessment of Alternative Ring Ways," Sustainability, MDPI, vol. 5(10), pages 1-25, September.
    7. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Ülengin, Burç & Aktas, Emel, 2010. "A problem-structuring model for analyzing transportation-environment relationships," European Journal of Operational Research, Elsevier, vol. 200(3), pages 844-859, February.
    8. Hang, Wen & Li, Xuhong, 2010. "Application of system dynamics for evaluating truck weight regulations," Transport Policy, Elsevier, vol. 17(4), pages 240-250, August.
    9. Nilesh Anand & Ron van Duin & Lori Tavasszy, 2014. "Ontology-based multi-agent system for urban freight transportation," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(2), pages 133-153, July.
    10. Abbas, Khaled A. & Bell, Michael G. H., 1994. "System dynamics applicability to transportation modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 373-390, September.
    11. Tsamboulas, Dimitrios & Vrenken, Huub & Lekka, Anna-Maria, 2007. "Assessment of a transport policy potential for intermodal mode shift on a European scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 715-733, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Chen, Yan & Song, Dongdong & Zhi, Danyue & Wang, Yiyun & Gao, Ziyou, 2023. "Estimating intercity heavy truck mobility flows using the deep gravity framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Shankar, Ravi & Pathak, Devendra Kumar & Choudhary, Devendra, 2019. "Decarbonizing freight transportation: An integrated EFA-TISM approach to model enablers of dedicated freight corridors," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 85-100.
    3. Verônica Ghisolfi & Glaydston Mattos Ribeiro & Gisele de Lorena Diniz Chaves & Rômulo Dante Orrico Filho & Ivone Catarina Simões Hoffmann & Leonardo Roberto Perim, 2019. "Evaluating Impacts of Overweight in Road Freight Transportation: A Case Study in Brazil with System Dynamics," Sustainability, MDPI, vol. 11(11), pages 1-35, June.
    4. Verônica Ghisolfi & Lóránt Antal Tavasszy & Gonçalo Homem de Almeida Correia & Gisele de Lorena Diniz Chaves & Glaydston Mattos Ribeiro, 2022. "Freight Transport Decarbonization: A Systematic Literature Review of System Dynamics Models," Sustainability, MDPI, vol. 14(6), pages 1-30, March.
    5. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    6. Fines Miyoba & Egbert Mujuni & Musa Ndiaye & Hastings M. Libati & Adnan M. Abu-Mahfouz, 2024. "Sustainable Rail/Road Unimodal Transportation of Bulk Cargo in Zambia: A Review of Algorithm-Based Optimization Techniques," Mathematics, MDPI, vol. 12(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    2. Yunqiang Xue & Lin Cheng & Kuang Wang & Jing An & Hongzhi Guan, 2020. "System Dynamics Analysis of the Relationship between Transit Metropolis Construction and Sustainable Development of Urban Transportation—Case Study of Nanchang City, China," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    3. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    4. Ozgur M. Araz & Fernando A. Wilson & Jim P. Stimpson, 2020. "Complex systems modeling for evaluating potential impact of traffic safety policies: a case on drug-involved fatal crashes," Annals of Operations Research, Springer, vol. 291(1), pages 37-58, August.
    5. Kong, Dongmin & Pan, Yue & Tian, Gary Gang & Zhang, Pengdong, 2020. "CEOs' hometown connections and access to trade credit: Evidence from China," Journal of Corporate Finance, Elsevier, vol. 62(C).
    6. Juan Guillermo Urzúa-Morales & Juan Pedro Sepulveda-Rojas & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Manuel Vargas, 2020. "Logistic Modeling of the Last Mile: Case Study Santiago, Chile," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    7. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    8. Hongjin Zhu & Yue Pan & Jiaping Qiu & Jinli Xiao, 2022. "Hometown Ties and Favoritism in Chinese Corporations: Evidence from CEO Dismissals and Corporate Social Responsibility," Journal of Business Ethics, Springer, vol. 176(2), pages 283-310, March.
    9. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    10. Chaoren Lu, 2014. "The role of sustainability policy in influencing service innovation. a case study of Changzhou BRT system," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2014(3), pages 167-168.
    11. Yunqiang Xue & Hongzhi Guan & Jonathan Corey & Bing Zhang & Hai Yan & Yan Han & Huanmei Qin, 2017. "Transport Emissions and Energy Consumption Impacts of Private Capital Investment in Public Transport," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    12. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    13. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    14. Alexandra TUDORICA & Cristian Silviu BANACU, 2018. "A Review Of Public Measures For Supporting The Development Of Rail-Road Intermodal Freight Transport In Romania," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 12(1), pages 165-173, November.
    15. Hang, Wen & Xie, Yuanchang & He, Jie, 2013. "Practices of using weigh-in-motion technology for truck weight regulation in China," Transport Policy, Elsevier, vol. 30(C), pages 143-152.
    16. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    17. Jian Chu & Raymond Fisman & Songtao Tan & Yongxiang Wang, 2021. "Hometown Ties and the Quality of Government Monitoring: Evidence from Rotation of Chinese Auditors," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 176-201, July.
    18. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    19. Yingyi Huang & Yuliya Mamatok & Chun Jin, 2021. "Decision-making instruments for container seaport sustainable development: management platform and system dynamics model," Environment Systems and Decisions, Springer, vol. 41(2), pages 212-226, June.
    20. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:398-:d:92447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.