IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4644-d1088604.html
   My bibliography  Save this article

A Bibliometric Analysis and Visualization of Aviation Carbon Emissions Studies

Author

Listed:
  • Xirui Li

    (School of Civil Aviation, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
    Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Junqi Tang

    (Gas Company, China Petrochemical Corporation, Beijing 100728, China)

  • Weidong Li

    (College of Chemical Engineering, Fuzhou University, Fuzhou 350180, China)

  • Qingmin Si

    (School of Civil Aviation, Zhengzhou University of Aeronautics, Zhengzhou 450015, China)

  • Xinyao Guo

    (School of Civil Aviation, Zhengzhou University of Aeronautics, Zhengzhou 450015, China)

  • Linqing Niu

    (School of Civil Aviation, Zhengzhou University of Aeronautics, Zhengzhou 450015, China)

Abstract

Carbon peaking and carbon neutrality are gaining global consensus, and carbon reduction in aviation is necessary and urgent. The main objective of this research paper is to map and analyze the knowledge graph of aviation carbon emissions research from a bibliometric perspective. Publications related to aviation carbon emissions indexed by Scopus for the period 1992 to 2021 were analyzed primarily using CiteSpace software. This paper presents a bibliometric analysis of current research progress from four perspectives: (1) descriptive analysis of publications, involving annual distribution, authors, and journals; (2) analysis of co-cited authors and their countries; (3) co-citation analysis of cited references; and (4) co-occurrence analysis of keywords. A series of domain knowledge maps were constructed to visualize the core of aviation carbon emissions research and to distill the research perspectives on aviation carbon emissions in the past 20 years. The latest and most important research results in the field obtained through the combing provide certain references for the research and development of aviation carbon emissions.

Suggested Citation

  • Xirui Li & Junqi Tang & Weidong Li & Qingmin Si & Xinyao Guo & Linqing Niu, 2023. "A Bibliometric Analysis and Visualization of Aviation Carbon Emissions Studies," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4644-:d:1088604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard H. Moore & Kenneth L. Thornhill & Bernadett Weinzierl & Daniel Sauer & Eugenio D’Ascoli & Jin Kim & Michael Lichtenstern & Monika Scheibe & Brian Beaton & Andreas J. Beyersdorf & John Barrick , 2017. "Biofuel blending reduces particle emissions from aircraft engines at cruise conditions," Nature, Nature, vol. 543(7645), pages 411-415, March.
    2. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    3. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    4. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    5. Abdulaziz I. Almulhim & Simon Elias Bibri & Ayyoob Sharifi & Shakil Ahmad & Khalid Mohammed Almatar, 2022. "Emerging Trends and Knowledge Structures of Urbanization and Environmental Sustainability: A Regional Perspective," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    6. Bows, Alice & Anderson, Kevin L., 2007. "Policy clash: Can projected aviation growth be reconciled with the UK Government's 60% carbon-reduction target?," Transport Policy, Elsevier, vol. 14(2), pages 103-110, March.
    7. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Tacconi, Daniela, 2014. "Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels," Applied Energy, Elsevier, vol. 136(C), pages 767-774.
    8. Liu, Jin & Tian, Jiayu & Lyu, Wenjing & Yu, Yitian, 2022. "The impact of COVID-19 on reducing carbon emissions: From the angle of international student mobility," Applied Energy, Elsevier, vol. 317(C).
    9. Koroneos, C. & Dompros, A. & Roumbas, G. & Moussiopoulos, N., 2005. "Advantages of the use of hydrogen fuel as compared to kerosene," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 99-113.
    10. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
    11. Liliana Barbu & Diana Marieta Mihaiu & Radu-Alexandru Șerban & Alin Opreana, 2022. "Knowledge Mapping of Optimal Taxation Studies: A Bibliometric Analysis and Network Visualization," Sustainability, MDPI, vol. 14(2), pages 1-36, January.
    12. Becken, Susanne & Mackey, Brendan, 2017. "What role for offsetting aviation greenhouse gas emissions in a deep-cut carbon world?," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 71-83.
    13. Ying Lu & Walter Timo de Vries, 2021. "A Bibliometric and Visual Analysis of Rural Development Research," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangxu Li & Lingyu Wang & Jie Hu, 2023. "Integration with Visual Perception—Research on the Usability of a Data Visualization Interface Layout in Zero-Carbon Parks Based on Eye-Tracking Technology," Sustainability, MDPI, vol. 15(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    2. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    3. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.
    4. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    5. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    6. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    7. Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
    8. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    9. Minxi Wang & Ping Liu & Zhaoliang Gu & Hong Cheng & Xin Li, 2019. "A Scientometric Review of Resource Recycling Industry," IJERPH, MDPI, vol. 16(23), pages 1-18, November.
    10. Jake R. Nelson & Tony H. Grubesic, 2018. "Environmental Justice: A Panoptic Overview Using Scientometrics," Sustainability, MDPI, vol. 10(4), pages 1-18, March.
    11. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    12. Jiaqi Xie & Guangqi Zhang & Yuling Li & Xiyu Yan & Lipeng Zang & Qingfu Liu & Danmei Chen & Mingzhen Sui & Yuejun He, 2023. "A Bibliometric Analysis of Forest Gap Research during 1980–2021," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    13. Haochen Qian & Fan Zhang & Bing Qiu, 2023. "Deciphering the Evolution, Frontier, and Knowledge Clustering in Sustainable City Planning: A 60-Year Interdisciplinary Review," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    14. Taotao Yan & Jianhui Xue & Zhidong Zhou & Yongbo Wu, 2020. "The Trends in Research on the Effects of Biochar on Soil," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    15. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    16. Qing Yin & Muhan Yu & Xueliang Ma & Ying Liu & Xunzhi Yin, 2023. "The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends," Energies, MDPI, vol. 16(8), pages 1-24, April.
    17. Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
    18. Cathaysa Martín-Blanco & Montserrat Zamorano & Carmen Lizárraga & Valentin Molina-Moreno, 2022. "The Impact of COVID-19 on the Sustainable Development Goals: Achievements and Expectations," IJERPH, MDPI, vol. 19(23), pages 1-25, December.
    19. Ratri Parida & Manoj Kumar Dash & Anil Kumar & Edmundas Kazimieras Zavadskas & Sunil Luthra & Eyob Mulat‐weldemeskel, 2022. "Evolution of supply chain finance: A comprehensive review and proposed research directions with network clustering analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1343-1369, October.
    20. Yue Guiling & Siti Aisyah Panatik & Mohammad Saipol Mohd Sukor & Noraini Rusbadrol & Li Cunlin, 2022. "Bibliometric Analysis of Global Research on Organizational Citizenship Behavior From 2000 to 2019," SAGE Open, , vol. 12(1), pages 21582440221, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4644-:d:1088604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.