IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v44y2017i4d10.1007_s11116-016-9677-7.html
   My bibliography  Save this article

Exploring stability and change in transport systems: combining Delphi and system dynamics approaches

Author

Listed:
  • David Rees

    (Synergia Ltd.)

  • Janet Stephenson

    (University of Otago)

  • Debbie Hopkins

    (University of Otago)

  • Adam Doering

    (University of Otago)

Abstract

Transport is a vast and complex socio-technical system, and despite a clear need to reduce dependence on fossil fuels due to undesirable environmental impacts, it is largely locked into business-as-usual. Systems approaches are a useful way to help make sense of multiple competing influences which may be simultaneously driving change and supporting the status quo. This paper applies qualitative system dynamics modelling to help interpret the results of a Delphi study into global transport transitions, involving 22 international experts in various aspects of transport. The main contribution of the paper is its exploration of the use of system dynamics (SD) modelling to interpret the Delphi findings. SD modelling was used to reveal and elucidate the causal arguments put forward by the expert panel about the factors driving business-as-usual, the factors creating barriers to more sustainable transport systems, and the drivers of change. The SD model is used to explore and expose the key causal patterns at play, and how these interact to both support and hinder change. The resulting model shows the complex, interdependent dynamics involved in supporting the status quo. Even at the relatively high level of analysis reported here, the model is useful in revealing interdependencies between parts of the system, where change in one part may well have knock-on effects elsewhere in the system. In particular the model reveals the strong reinforcing loops that act to minimise the impact of change drivers and thus retain the dominance of automobility. The result is a system that is highly dependent on the continued existence of key reinforcements such as policies that subsidise fossil fuels. From a methodological perspective, the outcomes of the Delphi study provided a rich source of qualitative material which was highly suitable for developing a system dynamics model.

Suggested Citation

  • David Rees & Janet Stephenson & Debbie Hopkins & Adam Doering, 2017. "Exploring stability and change in transport systems: combining Delphi and system dynamics approaches," Transportation, Springer, vol. 44(4), pages 789-805, July.
  • Handle: RePEc:kap:transp:v:44:y:2017:i:4:d:10.1007_s11116-016-9677-7
    DOI: 10.1007/s11116-016-9677-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-016-9677-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-016-9677-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vennix, Jac A. M. & Gubbels, Jan W., 1992. "Knowledge elicitation in conceptual model building: A case study in modeling a regional Dutch health care system," European Journal of Operational Research, Elsevier, vol. 59(1), pages 85-101, May.
    2. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    3. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    4. Vennix, Jac A. M. & Andersen, David F. & Richardson, George P. & Rohrbaugh, John, 1992. "Model-building for group decision support: Issues and alternatives in knowledge elicitation," European Journal of Operational Research, Elsevier, vol. 59(1), pages 28-41, May.
    5. Watson, Matt, 2012. "How theories of practice can inform transition to a decarbonised transport system," Journal of Transport Geography, Elsevier, vol. 24(C), pages 488-496.
    6. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    7. Jay W. Forrester, 1968. "Industrial Dynamics--A Response to Ansoff and Slevin," Management Science, INFORMS, vol. 14(9), pages 601-618, May.
    8. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    9. Forrester, Jay W., 1992. "Policies, decisions and information sources for modeling," European Journal of Operational Research, Elsevier, vol. 59(1), pages 42-63, May.
    10. Sterman, J.D., 2006. "Learning from evidence in a complex world," American Journal of Public Health, American Public Health Association, vol. 96(3), pages 505-514.
    11. Stepp, Matthew D. & Winebrake, James J. & Hawker, J. Scott & Skerlos, Steven J., 2009. "Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness," Energy Policy, Elsevier, vol. 37(7), pages 2774-2787, July.
    12. Whitmarsh, Lorraine, 2012. "How useful is the Multi-Level Perspective for transport and sustainability research?," Journal of Transport Geography, Elsevier, vol. 24(C), pages 483-487.
    13. von der Gracht, Heiko A. & Darkow, Inga-Lena, 2010. "Scenarios for the logistics services industry: A Delphi-based analysis for 2025," International Journal of Production Economics, Elsevier, vol. 127(1), pages 46-59, September.
    14. Abbas, Khaled A. & Bell, Michael G. H., 1994. "System dynamics applicability to transportation modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 373-390, September.
    15. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Edward Randal & Caroline Shaw & Alistair Woodward & Philippa Howden-Chapman & Alex Macmillan & Jamie Hosking & Ralph Chapman & Andrew M. Waa & Michael Keall, 2020. "Fairness in Transport Policy: A New Approach to Applying Distributive Justice Theories," Sustainability, MDPI, vol. 12(23), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auvinen, Heidi & Ruutu, Sampsa & Tuominen, Anu & Ahlqvist, Toni & Oksanen, Juha, 2015. "Process supporting strategic decision-making in systemic transitions," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 97-114.
    2. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    3. Anthony McLean & Harriet Bulkeley & Mike Crang, 2016. "Negotiating the urban smart grid: Socio-technical experimentation in the city of Austin," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3246-3263, November.
    4. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    5. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    6. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    7. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Lopez-Behar, Diana & Tran, Martino & Froese, Thomas & Mayaud, Jerome R. & Herrera, Omar E. & Merida, Walter, 2019. "Charging infrastructure for electric vehicles in Multi-Unit Residential Buildings: Mapping feedbacks and policy recommendations," Energy Policy, Elsevier, vol. 126(C), pages 444-451.
    9. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    10. Yamaguchi, Yohei, 2019. "A practice-theory-based analysis of historical changes in household practices and energy demand: A case study from Japan," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 207-218.
    11. Schaffernicht, Martin & Groesser, Stefan N., 2011. "A comprehensive method for comparing mental models of dynamic systems," European Journal of Operational Research, Elsevier, vol. 210(1), pages 57-67, April.
    12. Spickermann, Alexander & Grienitz, Volker & von der Gracht, Heiko A., 2014. "Heading towards a multimodal city of the future?," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 201-221.
    13. Zhu, Bing & Nguyen, Mai & Sarm Siri, Nang & Malik, Ashish, 2022. "Towards a transformative model of circular economy for SMEs," Journal of Business Research, Elsevier, vol. 144(C), pages 545-555.
    14. Ruhrort, Lisa & Allert, Viktoria, 2021. "Conceptualizing the Role of Individual Agency in Mobility Transitions: Avenues for the Integration of Sociological and Psychological Perspectives," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12, pages 1-1.
    15. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    16. Sunio, Varsolo & Gaspay, Sandy & Guillen, Marie Danielle & Mariano, Patricia & Mora, Regina, 2019. "Analysis of the public transport modernization via system reconfiguration: The ongoing case in the Philippines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 1-19.
    17. Lee, Taedong & Glick, Mark B. & Lee, Jae-Hyup, 2020. "Island energy transition: Assessing Hawaii's multi-level, policy-driven approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    18. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Jens Schippl & Annika Arnold, 2020. "Stakeholders’ Views on Multimodal Urban Mobility Futures: A Matter of Policy Interventions or Just the Logical Result of Digitalization?," Energies, MDPI, vol. 13(7), pages 1-16, April.
    20. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2019. "Systematic Review of Integrated Sustainable Transportation Models for Electric Passenger Vehicle Diffusion," Sustainability, MDPI, vol. 11(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:44:y:2017:i:4:d:10.1007_s11116-016-9677-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.