IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v93y2021ics0969699721000326.html
   My bibliography  Save this article

Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame

Author

Listed:
  • Chiambaretto, Paul
  • Mayenc, Elodie
  • Chappert, Hervé
  • Engsig, Juliane
  • Fernandez, Anne-Sophie
  • Le Roy, Frédéric

Abstract

A growing number of citizens are concerned about the environmental impact of air transport, and aviation has become synonymous with high carbon emissions and global warming, which has led to the development of flygskam (or flight shame) in Europe. While its impact on air traffic remains unclear, flight shame has forced the airline industry to react and better understand its origin. In this research, building on the growing literature on industry and organizational stigma, we assume that flight shame can be partly explained by a distorted public perception of the environmental impact of air transport. Accordingly, we investigate the level of knowledge of the environmental footprint of air transport. Based on a sample of 1018 French respondents, we reveal that more than 90% of respondents overestimate the share of air transport in global carbon emissions. We also show that 98% of the respondents underestimate the reduction in carbon emissions per passenger. Finally, we investigate the awareness of the measures taken by the industry to curb its carbon emissions and highlight, for instance, that 70% of respondents overestimate the fuel consumption of the newest generations of aircraft. Based on these results, we draw lessons for airlines and for the air transport industry to help cope with flight shame in Europe.

Suggested Citation

  • Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
  • Handle: RePEc:eee:jaitra:v:93:y:2021:i:c:s0969699721000326
    DOI: 10.1016/j.jairtraman.2021.102049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699721000326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2021.102049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McLennan, Char-lee J. & Becken, Susanne & Battye, Rod & So, Kevin Kam Fung, 2014. "Voluntary carbon offsetting: Who does it?," Tourism Management, Elsevier, vol. 45(C), pages 194-198.
    2. Liu, Xiao & Hang, Ye & Wang, Qunwei & Zhou, Dequn, 2020. "Flying into the future: A scenario-based analysis of carbon emissions from China's civil aviation," Journal of Air Transport Management, Elsevier, vol. 85(C).
    3. Andreas W. Schäfer & Steven R. H. Barrett & Khan Doyme & Lynnette M. Dray & Albert R. Gnadt & Rod Self & Aidan O’Sullivan & Athanasios P. Synodinos & Antonio J. Torija, 2019. "Technological, economic and environmental prospects of all-electric aircraft," Nature Energy, Nature, vol. 4(2), pages 160-166, February.
    4. Postorino, Maria Nadia & Mantecchini, Luca & Paganelli, Filippo, 2019. "Improving taxi-out operations at city airports to reduce CO2 emissions," Transport Policy, Elsevier, vol. 80(C), pages 167-176.
    5. Sharp, Anne & Wheeler, Meagan, 2013. "Reducing householders’ grocery carbon emissions: Carbon literacy and carbon label preferences," Australasian marketing journal, Elsevier, vol. 21(4), pages 240-249.
    6. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    7. Scheelhaase, Janina & Maertens, Sven & Grimme, Wolfgang & Jung, Martin, 2018. "EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport's CO2 emissions by market-based measures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 55-62.
    8. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    9. Tanrıverdi, Gökhan & Bakır, Mahmut & Merkert, Rico, 2020. "What can we learn from the JATM literature for the future of aviation post Covid-19? - A bibliometric and visualization analysis," Journal of Air Transport Management, Elsevier, vol. 89(C).
    10. Rosenow, Judith & Fricke, Hartmut, 2019. "Impact of multi-criteria optimized trajectories on European airline efficiency, safety and airspace demand," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 133-143.
    11. Soria Baledón, Mónica & Kosoy, Nicolás, 2018. "“Problematizing†carbon emissions from international aviation and the role of alternative jet fuels in meeting ICAO's mid-century aspirational goals," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 130-137.
    12. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
    13. Mayer, Robert & Ryley, Tim & Gillingwater, David, 2012. "Passenger perceptions of the green image associated with airlines," Journal of Transport Geography, Elsevier, vol. 22(C), pages 179-186.
    14. Smith, P.M. & Gaffney, M.J. & Shi, W. & Hoard, S. & Armendariz, I. Ibarrola & Mueller, D.W., 2017. "Drivers and barriers to the adoption and diffusion of Sustainable Jet Fuel (SJF) in the U.S. Pacific Northwest," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 113-124.
    15. Baharozu, Eren & Soykan, Gurkan & Ozerdem, M. Baris, 2017. "Future aircraft concept in terms of energy efficiency and environmental factors," Energy, Elsevier, vol. 140(P2), pages 1368-1377.
    16. Dobruszkes, Frédéric & Efthymiou, Marina, 2020. "When environmental indicators are not neutral: Assessing aircraft noise assessment in Europe," Journal of Air Transport Management, Elsevier, vol. 88(C).
    17. Hagmann, Carmen & Semeijn, Janjaap & Vellenga, David B., 2015. "Exploring the green image of airlines: Passenger perceptions and airline choice," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 37-45.
    18. Theodoulidis, Babis & Diaz, David & Crotto, Federica & Rancati, Elisa, 2017. "Exploring corporate social responsibility and financial performance through stakeholder theory in the tourism industries," Tourism Management, Elsevier, vol. 62(C), pages 173-188.
    19. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Cugueró-Escofet, Natàlia, 2020. "An early assessment of the impact of COVID-19 on air transport: Just another crisis or the end of aviation as we know it?," Journal of Transport Geography, Elsevier, vol. 86(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Xueli & Song, Xiaomeng & Kaygorodova, Anna & Ding, Xichun & Guo, Lijia & Huang, Jiashun, 2023. "Aviation and carbon emissions: Evidence from airport operations," Journal of Air Transport Management, Elsevier, vol. 109(C).
    2. Klophaus, Richard & Lauth, Gregor Julius, 2022. "Monetary mapping of the climate footprint of air travel to a single airport," Journal of Air Transport Management, Elsevier, vol. 101(C).
    3. Sergej Gricar & Stefan Bojnec & Tea Baldigara, 2022. "GHG Emissions and Economic Growth in the European Union, Norway, and Iceland: A Validated Time-Series Approach Based on a Small Number of Observations," JRFM, MDPI, vol. 15(11), pages 1-19, November.
    4. Osorio, Pilar & Cadarso, María-Ángeles & Tobarra, María-Ángeles & García-Alaminos, Ángela, 2023. "Carbon footprint of tourism in Spain: Covid-19 impact and a look forward to recovery," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 303-318.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    2. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.
    3. Paul Chiambaretto & Elodie Mayenc & Hervé Chappert & Juliane Engsig & Anne-Sophie Fernandez & Frédéric Le Roy, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Post-Print hal-03514706, HAL.
    4. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    5. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    6. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2019. "AHP-Entropy based priority assessment of factors to reduce aviation fuel consumption," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 212-227, April.
    7. Anita Prapotnik Brdnik & Rok Kamnik & Maršenka Marksel & Stanislav Božičnik, 2019. "Market and Technological Perspectives for the New Generation of Regional Passenger Aircraft," Energies, MDPI, vol. 12(10), pages 1-14, May.
    8. Jana Eßer & Manuel Frondel & Stephan Sommer, 2023. "Soziale Normen und der Emissionsausgleich bei Flügen: Evidenz für deutsche Haushalte [Social Norms and Flight Emission Offsets: Evidence for German Households]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(1), pages 71-99, March.
    9. Mayer, Robert & Ryley, Tim & Gillingwater, David, 2015. "Eco-positioning of airlines: Perception versus actual performance," Journal of Air Transport Management, Elsevier, vol. 44, pages 82-89.
    10. Michelmann, Johannes & Schmalz, Ulrike & Becker, Axel & Stroh, Florian & Behnke, Sebastian & Hornung, Mirko, 2023. "Influence of COVID-19 on air travel - A scenario study toward future trusted aviation," Journal of Air Transport Management, Elsevier, vol. 106(C).
    11. Aneta Kulanovic & Johan Nordensvärd, 2021. "Exploring the Political Discursive Lock-Ins on Sustainable Aviation in Sweden," Energies, MDPI, vol. 14(21), pages 1-16, November.
    12. Talwar, Chetan & Joormann, Imke & Ginster, Raphael & Spengler, Thomas Stefan, 2023. "How much can electric aircraft contribute to reaching the Flightpath 2050 CO2 emissions goal? A system dynamics approach for european short haul flights," Journal of Air Transport Management, Elsevier, vol. 112(C).
    13. Warnock-Smith, David & Graham, Anne & O'Connell, John F. & Efthymiou, Marina, 2021. "Impact of COVID-19 on air transport passenger markets: Examining evidence from the Chinese market," Journal of Air Transport Management, Elsevier, vol. 94(C).
    14. Pérez-Campuzano, Darío & Rubio Andrada, Luis & Morcillo Ortega, Patricio & López-Lázaro, Antonio, 2022. "Visualizing the historical COVID-19 shock in the US airline industry: A Data Mining approach for dynamic market surveillance," Journal of Air Transport Management, Elsevier, vol. 101(C).
    15. Salesi, Vinolia Kilinaivoni & Kan Tsui, Wai Hong & Fu, Xiaowen & Gilbey, Andrew, 2022. "Strategies for South Pacific Region to address future pandemics: Implications for the aviation and tourism sectors based on a systematic literature review (2010–2021)," Transport Policy, Elsevier, vol. 125(C), pages 107-126.
    16. Niu, Shih-Yuan & Liu, Chiung-Lin & Chang, Chih-Ching & Ye, Kung-Don, 2016. "What are passenger perspectives regarding airlines' environmental protection? An empirical investigation in Taiwan," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 84-91.
    17. Sun, Xiaoqian & Wandelt, Sebastian & Zheng, Changhong & Zhang, Anming, 2021. "COVID-19 pandemic and air transportation: Successfully navigating the paper hurricane," Journal of Air Transport Management, Elsevier, vol. 94(C).
    18. Kuo, Pei-Fen & Brawiswa Putra, I Gede & Setiawan, Faizal Azmi & Wen, Tzai-Hung & Chiu, Chui-Sheng & Sulistyah, Umroh Dian, 2022. "The impact of the COVID-19 pandemic on O-D flow and airport networks in the origin country and in Northeast Asia," Journal of Air Transport Management, Elsevier, vol. 100(C).
    19. Cui, Qiang & Hu, Yu-xin & Yu, Li-ting, 2022. "Can the aviation industry achieve carbon emission reduction and revenue growth simultaneously under the CNG2020 strategy? An empirical study with 25 benchmarking airlines," Energy, Elsevier, vol. 245(C).
    20. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:93:y:2021:i:c:s0969699721000326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.