IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v28y2006i5-6p610-631.html
   My bibliography  Save this item

Technology and technical change in the MIT EPPA model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yazid Dissou & Reza Ghazal, 2010. "Energy Substitutability in Canadian Manufacturing Econometric Estimation with Bootstrap Confidence Intervals," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 121-148.
  2. Kiuila, O. & Rutherford, T.F., 2013. "The cost of reducing CO2 emissions: Integrating abatement technologies into economic modeling," Ecological Economics, Elsevier, vol. 87(C), pages 62-71.
  3. Olivier Durand-Lasserve & Axel Pierru & Yves Smeers, 2011. "Effects of the Uncertainty about Global Economic Recovery on Energy Transition and CO2 Price," Working Papers 1105, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
  4. Zha, Donglan & Ding, Ning, 2014. "Elasticities of substitution between energy and non-energy inputs in China power sector," Economic Modelling, Elsevier, vol. 38(C), pages 564-571.
  5. Gu, Gaoxiang & Wang, Zheng & Wu, Leying, 2021. "Carbon emission reductions under global low-carbon technology transfer and its policy mix with R&D improvement," Energy, Elsevier, vol. 216(C).
  6. Yingying Lu & David I. Stern, 2016. "Substitutability and the Cost of Climate Mitigation Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 81-107, May.
  7. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2012. "The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050," Energy Policy, Elsevier, vol. 50(C), pages 736-750.
  8. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
  9. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  10. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
  11. Lin, Boqiang & Jia, Zhijie, 2017. "The impact of Emission Trading Scheme (ETS) and the choice of coverage industry in ETS: A case study in China," Applied Energy, Elsevier, vol. 205(C), pages 1512-1527.
  12. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
  13. Marco Springmann & Da Zhang & Valerie Karplus, 2015. "Consumption-Based Adjustment of Emissions-Intensity Targets: An Economic Analysis for China’s Provinces," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 615-640, August.
  14. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
  15. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
  16. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
  17. Marco Rogna, 2020. "Microeconomic models of a production economy with environmental externalities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2625-2650, March.
  18. Alfredo Pereira & Rui Pereira, 2013. "Fossil fuel prices and the economic and budgetary challenges of a small energy-importing economy: the case of Portugal," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(3), pages 181-214, December.
  19. Pereira, Alfredo M. & Pereira, Rui M., 2014. "On the environmental, economic and budgetary impacts of fossil fuel prices: A dynamic general equilibrium analysis of the Portuguese case," Energy Economics, Elsevier, vol. 42(C), pages 248-261.
  20. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
  21. McFarland, James R. & Paltsev, Sergey & Jacoby, Henry D., 2009. "Analysis of the Coal Sector under Carbon Constraints," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 404-424, May.
  22. Trink, Thomas & Schmid, Christoph & Schinko, Thomas & Steininger, Karl W. & Loibnegger, Thomas & Kettner, Claudia & Pack, Alexandra & Töglhofer, Christoph, 2010. "Regional economic impacts of biomass based energy service use: A comparison across crops and technologies for East Styria, Austria," Energy Policy, Elsevier, vol. 38(10), pages 5912-5926, October.
  23. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
  24. Wei Li & Zhijie Jia, 2017. "Carbon tax, emission trading, or the mixed policy: which is the most effective strategy for climate change mitigation in China?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 973-992, August.
  25. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
  26. Zha, Donglan & Ding, Ning, 2015. "Threshold characteristic of energy efficiency on substitution between energy and non-energy factors," Economic Modelling, Elsevier, vol. 46(C), pages 180-187.
  27. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
  28. Claudio Baccianti & Andreas Löschel, 2014. "The Role of Product and Process Innovation in CGE Models of Environmental Policy. WWWforEurope Working Paper No. 68," WIFO Studies, WIFO, number 47501, February.
  29. Satoru Kasahara & Sergey Paltsev & John Reilly & Henry Jacoby & A. Ellerman, 2007. "Climate Change Taxes and Energy Efficiency in Japan," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(2), pages 377-410, June.
  30. Rausch, Sebastian & Zhang, Da, 2018. "Capturing natural resource heterogeneity in top-down energy-economic equilibrium models," Energy Economics, Elsevier, vol. 74(C), pages 917-926.
  31. Koesler, Simon & Schymura, Michael, 2012. "Substitution elasticities in a CES production framework: An empirical analysis on the basis of non-linear least squares estimations," ZEW Discussion Papers 12-007, ZEW - Leibniz Centre for European Economic Research.
  32. Tang, Bao-Jun & Wang, Xiang-Yu & Wei, Yi-Ming, 2019. "Quantities versus prices for best social welfare in carbon reduction: A literature review," Applied Energy, Elsevier, vol. 233, pages 554-564.
  33. Rui M. Pereira & Alfredo M. Pereira, 2017. "The Economic and Budgetary Impact of Climate Policy in Portugal: Carbon Taxation in a Dynamic General Equilibrium Model with Endogenous Public Sector Behavior," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 231-259, June.
  34. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
  35. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
  36. Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
  37. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
  38. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
  39. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
  40. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.
  41. Rivers, Nicholas, 2013. "Renewable energy and unemployment: A general equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 35(4), pages 467-485.
  42. Turton, Hal, 2008. "ECLIPSE: An integrated energy-economy model for climate policy and scenario analysis," Energy, Elsevier, vol. 33(12), pages 1754-1769.
  43. Simon Koesler & Michael Schymura, 2012. "Substitution Elasticities for CGE Models," EcoMod2012 4010, EcoMod.
  44. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
  45. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
  46. Shenghao Feng & Keyu Zhang & Xiujian Peng, 2021. "Elasticity of Substitution Between Electricity and Non-Electric Energy in the Context of Carbon Neutrality in China," Centre of Policy Studies/IMPACT Centre Working Papers g-323, Victoria University, Centre of Policy Studies/IMPACT Centre.
  47. Francesco Ricci, 2007. "Resource Conservation and Directed R&D as Strategic Complements," Energy and Environmental Modeling 2007 24000052, EcoMod.
  48. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
  49. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  50. Haqiqi, Iman & Bahalou Horeh, Marziyeh, 2021. "Assessment of COVID-19 impacts on U.S. counties using the immediate impact model of local agricultural production (IMLAP)," Agricultural Systems, Elsevier, vol. 190(C).
  51. Donald Larson & Gunnar Breustedt, 2009. "Will Markets Direct Investments Under the Kyoto Protocol? Lessons from the Activities Implemented Jointly Pilots," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 433-456, July.
  52. Dixon, Peter B. & Rimmer, Maureen T., 2009. "Simulating the U.S. recession," Conference papers 331862, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.