IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v50y2012icp736-750.html
   My bibliography  Save this article

The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050

Author

Listed:
  • Dai, Hancheng
  • Masui, Toshihiko
  • Matsuoka, Yuzuru
  • Fujimori, Shinichiro

Abstract

This paper explores how China’s household consumption patterns over the period 2005–2050 influence the total energy demand and carbon dioxide (CO2) emissions in two baseline scenarios, and how it influences carbon prices as well as the economic cost in the corresponding carbon mitigation scenarios. To this end we first put forward two possible household consumption expenditure patterns up to 2050 using the Working–Leser model, taking into account total expenditure increase and urbanization. For comparison, both expenditure patterns are then incorporated in a hybrid recursive dynamic computable general equilibrium model. The results reveal that as income level increases in the coming decades, the direct and indirect household energy requirements and CO2 emissions would rise drastically. When household expenditure shifts from material products and transport to service-oriented goods, around 21,000 mtce11Mtce: million ton coal equivalent, equal to 29.31 giga-joules. of primary energy and 45 billion tons of CO2 emissions would be saved over the 45-year period from 2005 to 2050. Moreover, carbon prices in the dematerialized mitigation scenario would fall by 13% in 2050, thus reducing the economic cost.

Suggested Citation

  • Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2012. "The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050," Energy Policy, Elsevier, vol. 50(C), pages 736-750.
  • Handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:736-750
    DOI: 10.1016/j.enpol.2012.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512007057
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Hi-Chun & Heo, Eunnyeong, 2007. "The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000--An input-output analysis," Energy Policy, Elsevier, vol. 35(5), pages 2839-2851, May.
    2. Vringer, Kees & Blok, Kornelis, 1995. "The direct and indirect energy requirements of households in the Netherlands," Energy Policy, Elsevier, vol. 23(10), pages 893-910, October.
    3. Jacoby, Henry D. & Reilly, John M. & McFarland, James R. & Paltsev, Sergey, 2006. "Technology and technical change in the MIT EPPA model," Energy Economics, Elsevier, vol. 28(5-6), pages 610-631, November.
    4. Kander, Astrid, 2005. "Baumol's disease and dematerialization of the economy," Ecological Economics, Elsevier, vol. 55(1), pages 119-130, October.
    5. Wing, Ian Sue, 2006. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3847-3869, December.
    6. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    7. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    8. Ayres, Robert U. & van den Bergh, Jeroen C.J.M., 2005. "A theory of economic growth with material/energy resources and dematerialization: Interaction of three growth mechanisms," Ecological Economics, Elsevier, vol. 55(1), pages 96-118, October.
    9. Kemfert, Claudia, 2005. "Induced technological change in a multi-regional, multi-sectoral, integrated assessment model (WIAGEM): Impact assessment of climate policy strategies," Ecological Economics, Elsevier, vol. 54(2-3), pages 293-305, August.
    10. Vringer, Kees & Blok, Kornelis, 2000. "Long-term trends in direct and indirect household energy intensities: a factor in dematerialisation?," Energy Policy, Elsevier, vol. 28(10), pages 713-727, August.
    11. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    12. Jackson, Tim & Papathanasopoulou, Eleni, 2008. "Luxury or 'lock-in'? An exploration of unsustainable consumption in the UK: 1968 to 2000," Ecological Economics, Elsevier, vol. 68(1-2), pages 80-95, December.
    13. Reinders, A. H. M. E. & Vringer, K. & Blok, K., 2003. "The direct and indirect energy requirement of households in the European Union," Energy Policy, Elsevier, vol. 31(2), pages 139-153, January.
    14. Papathanasopoulou, Eleni, 2010. "Household consumption, associated fossil fuel demand and carbon dioxide emissions: The case of Greece between 1990 and 2006," Energy Policy, Elsevier, vol. 38(8), pages 4152-4162, August.
    15. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    16. James Banks & Richard Blundell & Arthur Lewbel, 1997. "Quadratic Engel Curves And Consumer Demand," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 527-539, November.
    17. Giannis Karagiannis & Kostas Velentzas, 2004. "Decomposition analysis of consumers' demand changes: an application to Greek consumption data," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 497-504.
    18. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    19. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    20. Ignazio Mongelli & Frederik Neuwahl & Jose Rueda-Cantuche, 2010. "Integrating A Household Demand System In The Input-Output Framework. Methodological Aspects And Modelling Implications," Economic Systems Research, Taylor & Francis Journals, vol. 22(3), pages 201-222.
    21. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    22. Alessio Moneta & Andreas Chai, 2010. "The evolution of Engel curves and its implications for structural change," Discussion Papers in Economics economics:201009, Griffith University, Department of Accounting, Finance and Economics.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:736-750. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.