IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v125y2023ics0140988323002955.html
   My bibliography  Save this article

Targeting energy savings? Better on primary than final energy and less on intensity metrics

Author

Listed:
  • Rodríguez, M.
  • Teotónio, C.
  • Roebeling, P.
  • Fortes, P.

Abstract

Energy efficiency is a critical issue in public policies, as it is the key to decoupling economic growth and energy use. These objectives are becoming even more relevant to addressing the energy crisis and the new geopolitical scenarios delivered by the Ukraine war. Although several papers have analyzed energy efficiency goals, this paper focuses on energy savings targets, which represent the main efficiency metric for the European Union. This paper fills a gap in literature by analyzing the economic and environmental impacts of attaining energy efficiency targets through an energy fiscal policy, simulated by a hybrid computable general equilibrium model with technological detail. Six scenarios are defined for energy savings in primary/final energy consumption of fossil-fueled/all energy products, using Portugal as a case study. Relevant insights for policy makers from the simulated scenarios include: (i) achieving energy saving targets by alternative means, i.e., directed at primary or final energy consumption, provide heterogeneous impacts on the efficiency of the energy system and GDP, and some unexpected and undesirable outcomes concerning environmental impacts; (ii) a relatively lower taxation of all energy products deliver larger and more distorting impacts on electricity generation than higher taxes on fossil fuels only (a counterintuitive result), (iii) policies aiming to reduce primary energy instead of final energy provide the best outcomes (further increases in the efficiency of the energy system with smoother economic impacts), thereby pointing against the European Energy Taxation directive principle that taxation should be levied on final products, regardless of inputs used in their production and (iv) and targets should not be set up based on energy intensity indicators. Hence, it is shown that the size of the trade-off between economic and environmental concerns depends on where (primary or final energy consumption) and what (fossil or all energy products) energy savings are targeted.

Suggested Citation

  • Rodríguez, M. & Teotónio, C. & Roebeling, P. & Fortes, P., 2023. "Targeting energy savings? Better on primary than final energy and less on intensity metrics," Energy Economics, Elsevier, vol. 125(C).
  • Handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s0140988323002955
    DOI: 10.1016/j.eneco.2023.106797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323002955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Figus, Gioele & Turner, Karen & McGregor, Peter & Katris, Antonios, 2017. "Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits," Energy Policy, Elsevier, vol. 111(C), pages 157-165.
    3. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    4. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    5. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    6. Böhringer, Christoph & Rutherford, Thomas F., 2013. "Transition towards a low carbon economy: A computable general equilibrium analysis for Poland," Energy Policy, Elsevier, vol. 55(C), pages 16-26.
    7. Jin Xu & Weixian Wei, 2022. "Would carbon tax be an effective policy tool to reduce carbon emission in China? Policies simulation analysis based on a CGE model," Applied Economics, Taylor & Francis Journals, vol. 54(1), pages 115-134, January.
    8. Cai, Yiyong & Arora, Vipin, 2015. "Disaggregating electricity generation technologies in CGE models: A revised technology bundle approach with an application to the U.S. Clean Power Plan," Applied Energy, Elsevier, vol. 154(C), pages 543-555.
    9. Antosiewicz, Marek & Fuentes, J. Rodrigo & Lewandowski, Piotr & Witajewski-Baltvilks, Jan, 2022. "Distributional effects of emission pricing in a carbon-intensive economy: The case of Poland," Energy Policy, Elsevier, vol. 160(C).
    10. Proença, Sara & St. Aubyn, Miguel, 2013. "Hybrid modeling to support energy-climate policy: Effects of feed-in tariffs to promote renewable energy in Portugal," Energy Economics, Elsevier, vol. 38(C), pages 176-185.
    11. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    12. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    13. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    14. Christoph Bӧhringer & Michael Ferris & Thomas F. Rutherford, 1998. "Alternative CO2 abatement strategies for the European Union," Chapters, in: Stef Proost & John B. Braden (ed.), Climate Change, Transport and Environmental Policy, chapter 2, pages 16-47, Edward Elgar Publishing.
    15. Wei, Taoyuan & Liu, Yang, 2017. "Estimation of global rebound effect caused by energy efficiency improvement," Energy Economics, Elsevier, vol. 66(C), pages 27-34.
    16. Labandeira, Xavier & Labeaga, José M. & Rodríguez, Miguel, 2009. "An integrated economic and distributional analysis of energy policies," Energy Policy, Elsevier, vol. 37(12), pages 5776-5786, December.
    17. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    18. Freire-González, Jaume & Puig-Ventosa, Ignasi, 2019. "Reformulating taxes for an energy transition," Energy Economics, Elsevier, vol. 78(C), pages 312-323.
    19. Wing, Ian Sue, 2006. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3847-3869, December.
    20. Wu, Yi-Hua & Liu, Chia-Hao & Hung, Ming-Lung & Liu, Tzu-Yar & Masui, Toshihiko, 2019. "Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models," Energy Policy, Elsevier, vol. 132(C), pages 1241-1255.
    21. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
    22. Rodríguez, Miguel & Pena-Boquete, Yolanda, 2017. "Carbon intensity changes in the Asian Dragons. Lessons for climate policy design," Energy Economics, Elsevier, vol. 66(C), pages 17-26.
    23. David G. Blanchflower & Andrew J. Oswald, 1995. "An Introduction to the Wage Curve," Journal of Economic Perspectives, American Economic Association, vol. 9(3), pages 153-167, Summer.
    24. Koesler, Simon & Swales, Kim & Turner, Karen, 2016. "International spillover and rebound effects from increased energy efficiency in Germany," Energy Economics, Elsevier, vol. 54(C), pages 444-452.
    25. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    26. Liu, Yu & Lu, Yingying, 2015. "The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis," Applied Energy, Elsevier, vol. 141(C), pages 96-105.
    27. Yu, Xuewei & Moreno-Cruz, Juan & Crittenden, John C., 2015. "Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA," Energy Policy, Elsevier, vol. 87(C), pages 250-259.
    28. Lin, Boqiang & Jia, Zhijie, 2019. "How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China?," Energy Economics, Elsevier, vol. 84(C).
    29. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    30. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    31. Bataille, Chris & Melton, Noel, 2017. "Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012," Energy Economics, Elsevier, vol. 64(C), pages 118-130.
    32. Azhgaliyeva, Dina & Liu, Yang & Liddle, Brantley, 2020. "An empirical analysis of energy intensity and the role of policy instruments," Energy Policy, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    2. Sarasa, Cristina & Turner, Karen, 2021. "Can a combination of efficiency initiatives give us “good” rebound effects?," Energy, Elsevier, vol. 235(C).
    3. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    4. Xavier Labandeira, Pedro Linares and Miguel Rodriguez, 2009. "An Integrated Approach to Simulate the impacts of Carbon Emissions Trading Schemes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    5. Rodríguez, Miguel & Robaina, Margarita & Teotónio, Carla, 2019. "Sectoral effects of a Green Tax Reform in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 408-418.
    6. Tugba Somuncu & Christopher Hannum, 2018. "The Rebound Effect of Energy Efficiency Policy in the Presence of Energy Theft," Energies, MDPI, vol. 11(12), pages 1-28, December.
    7. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    8. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    9. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    10. Standardi, Gabriele & Cai, Yiyong & Yeh, Sonia, 2017. "Sensitivity of modeling results to technological and regional details: The case of Italy's carbon mitigation policy," Energy Economics, Elsevier, vol. 63(C), pages 116-128.
    11. Ahmann, Lara & Banning, Maximilian & Lutz, Christian, 2022. "Modeling rebound effects and counteracting policies for German industries," Ecological Economics, Elsevier, vol. 197(C).
    12. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).
    13. Bruno Lanz & Thomas F. Rutherford, 2016. "GTAPINGAMS, version 9: Multiregional and small open economy models with alternative demand systems," IRENE Working Papers 16-08, IRENE Institute of Economic Research.
    14. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    15. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).
    16. Willenbockel, Dirk, 2017. "Macroeconomic Effects of a Low-Carbon Electricity Transition in Kenya and Ghana: An Exploratory Dynamic General Equilibrium Analysis," MPRA Paper 78070, University Library of Munich, Germany.
    17. Gonzalez, Mikel & Dellink, Rob B., 2006. "Impact of climate policy on the Basque country," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 6(12), pages 1-27.
    18. Langarita, Raquel & Duarte, Rosa & Hewings, Geoffrey & Sánchez-Chóliz, Julio, 2019. "Testing European goals for the Spanish electricity system using a disaggregated CGE model," Energy, Elsevier, vol. 179(C), pages 1288-1301.
    19. Böhringer, Christoph & Rivers, Nicholas, 2021. "The energy efficiency rebound effect in general equilibrium," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    20. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    More about this item

    Keywords

    Energy efficiency; Energy saving targets; Primary energy consumption; Final energy consumption; Fiscal policy; Hybrid computable general equilibrium model;
    All these keywords.

    JEL classification:

    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s0140988323002955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.