IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v111y2017icp157-165.html
   My bibliography  Save this article

Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits

Author

Listed:
  • Figus, Gioele
  • Turner, Karen
  • McGregor, Peter
  • Katris, Antonios

Abstract

In recent years, an overly narrow focus on rebound effects has limited the extent of researcher and policy attention afforded to the wider multiple benefits of increased energy efficiency. Our objective is to focus policy attention on the sustained added value to the economy that is created by improving energy efficiency in the residential sector. Governments around the world are committed to increasing energy efficiency more generally, but often focus public support in low income households where energy poverty is a particular concern. However, governments operate in a context of multiple objectives where energy efficiency is expected to deliver significant reductions in carbon emissions alongside sustainable economic development. We use a UK CGE model to consider the general effects of supporting increases in energy efficiency in residential energy use. Our results demonstrate that the increase in GDP, and economic activity more generally, triggered by increased energy efficiency delivers more in terms of increased household incomes than the efficiency improvement itself. We find that the more wide ranging the boost to energy efficiency, the greater the economic expansion and associated returns are likely to be, and the less the means of financing through public budgets will erode the benefits over time.

Suggested Citation

  • Figus, Gioele & Turner, Karen & McGregor, Peter & Katris, Antonios, 2017. "Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits," Energy Policy, Elsevier, vol. 111(C), pages 157-165.
  • Handle: RePEc:eee:enepol:v:111:y:2017:i:c:p:157-165
    DOI: 10.1016/j.enpol.2017.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517305888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Figus, Gioele & Turner, Karen & McGregor, Peter & Katris, Antonios, 2017. "Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits," Energy Policy, Elsevier, vol. 111(C), pages 157-165.
    2. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    3. Lenzen, Manfred & Dey, Christopher J., 2002. "Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options," Energy Economics, Elsevier, vol. 24(4), pages 377-403, July.
    4. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    5. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    6. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    7. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    8. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    9. Turner, Karen, 2009. "Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy," Energy Economics, Elsevier, vol. 31(5), pages 648-666, September.
    10. Hayashi, Fumio, 1982. "Tobin's Marginal q and Average q: A Neoclassical Interpretation," Econometrica, Econometric Society, vol. 50(1), pages 213-224, January.
    11. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation," Ecological Economics, Elsevier, vol. 86(C), pages 188-198.
    12. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    13. Lisa Ryan & Nina Campbell, 2012. "Spreading the Net: The Multiple Benefits of Energy Efficiency Improvements," IEA Energy Papers 2012/8, OECD Publishing.
    14. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    15. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    16. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    17. Murray, Cameron K., 2013. "What if consumers decided to all ‘go green’? Environmental rebound effects from consumption decisions," Energy Policy, Elsevier, vol. 54(C), pages 240-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katris, Antonios & Turner, Karen, 2021. "Can different approaches to funding household energy efficiency deliver on economic and social policy objectives? ECO and alternatives in the UK," Energy Policy, Elsevier, vol. 155(C).
    2. Allan, Grant & Comerford, David & McGregor, Peter, 2019. "The system-wide impact of healthy eating: Assessing emissions and economic impacts at the regional level," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    3. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany," Energies, MDPI, vol. 12(8), pages 1-21, April.
    4. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    5. Sarasa, Cristina & Turner, Karen, 2021. "Can a combination of efficiency initiatives give us “good” rebound effects?," Energy, Elsevier, vol. 235(C).
    6. Alabi, Oluwafisayo & Turner, Karen & Katris, Antonios & Calvillo, Christian, 2022. "Can network spending to support the shift to electric vehicles deliver wider economy gains? The role of domestic supply chain, price, and real wage effects," Energy Economics, Elsevier, vol. 110(C).
    7. Figus, Gioele & Turner, Karen & McGregor, Peter & Katris, Antonios, 2017. "Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits," Energy Policy, Elsevier, vol. 111(C), pages 157-165.
    8. Rodríguez, M. & Teotónio, C. & Roebeling, P. & Fortes, P., 2023. "Targeting energy savings? Better on primary than final energy and less on intensity metrics," Energy Economics, Elsevier, vol. 125(C).
    9. Alabi, Oluwafisayo & Turner, Karen & Figus, Gioele & Katris, Antonios & Calvillo, Christian, 2020. "Can spending to upgrade electricity networks to support electric vehicles (EVs) roll-outs unlock value in the wider economy?," Energy Policy, Elsevier, vol. 138(C).
    10. Wang, Lijun & Zha, Donglan & O’Mahony, Tadhg & Zhou, Dequn, 2023. "Energy efficiency lags and welfare boons: Understanding the rebound and welfare effects through China's urban households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Kiuila, Olga, 2018. "Decarbonisation perspectives for the Polish economy," Energy Policy, Elsevier, vol. 118(C), pages 69-76.
    12. Duarte, Rosa & Sánchez-Chóliz, Julio & Sarasa, Cristina, 2018. "Consumer-side actions in a low-carbon economy: A dynamic CGE analysis for Spain," Energy Policy, Elsevier, vol. 118(C), pages 199-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    2. Wang, Lijun & Zha, Donglan & O’Mahony, Tadhg & Zhou, Dequn, 2023. "Energy efficiency lags and welfare boons: Understanding the rebound and welfare effects through China's urban households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    4. Turner, Karen & Katris, Antonios, 2017. "A ‘Carbon Saving Multiplier’ as an alternative to rebound in considering reduced energy supply chain requirements from energy efficiency?," Energy Policy, Elsevier, vol. 103(C), pages 249-257.
    5. Hediger, Cécile & Farsi, Mehdi & Weber, Sylvain, 2018. "Turn It Up and Open the Window: On the Rebound Effects in Residential Heating," Ecological Economics, Elsevier, vol. 149(C), pages 21-39.
    6. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    7. Li, Jianglong & Li, Aijun & Xie, Xuan, 2018. "Rebound effect of transportation considering additional capital costs and input-output relationships: The role of subsistence consumption and unmet demand," Energy Economics, Elsevier, vol. 74(C), pages 441-455.
    8. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    9. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    10. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    11. Fullerton, Don & Ta, Chi L., 2020. "Costs of energy efficiency mandates can reverse the sign of rebound," Journal of Public Economics, Elsevier, vol. 188(C).
    12. Hendrik Schmitz and Reinhard Madlener, 2020. "Direct and Indirect Energy Rebound Effects in German Households: A Linearized Almost Ideal Demand System Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 89-118.
    13. Gioele Figus & Patrizio Lecca & Karen Turner & Peter McGregor, 2016. "Increased energy efficiency in Scottish households: trading-off economic benefits and energy rebound effects?," EcoMod2016 9454, EcoMod.
    14. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    16. Moz-Christofoletti, Maria Alice & Pereda, Paula Carvalho, 2021. "Distributional welfare and emission effects of energy tax policies in Brazil," Energy Economics, Elsevier, vol. 104(C).
    17. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    18. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.
    19. Kulmer, Veronika & Seebauer, Sebastian, 2019. "How robust are estimates of the rebound effect of energy efficiency improvements? A sensitivity analysis of consumer heterogeneity and elasticities," Energy Policy, Elsevier, vol. 132(C), pages 1-14.
    20. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).

    More about this item

    Keywords

    Energy efficiency; Energy demand; Fuel poverty; Multiple benefits; General equilibrium;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:111:y:2017:i:c:p:157-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.