IDEAS home Printed from https://ideas.repec.org/p/ekd/009007/9454.html
   My bibliography  Save this paper

Increased energy efficiency in Scottish households: trading-off economic benefits and energy rebound effects?

Author

Listed:
  • Gioele Figus
  • Patrizio Lecca
  • Karen Turner
  • Peter McGregor

Abstract

Energy rebound effect from increased energy efficiency has been generally considered as an undesired consequence of increasing energy efficiency policies that needs to be accounted when assessing the ability of such policies to decrease the demand for energy. However, recent studies have associated the energy rebound effect to a wider range of economic benefits coming from the higher energy efficiency. In computable general equilibrium (CGE) setting Lecca et al. 2014 show that a more efficient use of energy could lead to a reallocation of household’s expenditure towards non-energy sectors, which could stimulate the economy through a shift in the aggregate demand. However this would crowd out export due to an increased pressure on domestic consumption price. Here we use a regional (CGE) model for the Scottish economy to analyse the economic response of household - and of the wider economy - to an increase in household energy efficiency. We follow the approach of Lecca et al. 2014 but we focus on the regional case of Scotland. This allows us to understand some of the implications of moving from a national to a regional CGE modelling framework in the analysis of the impacts household energy efficiency improvements in the whole economy. The macroeconomic impacts of improving household energy efficiency are analysed using a CGE model for Scotland called AMOS-ENVI. This is a dynamic CGE model with forward-looking investment and consumption decisions, designed to analyse environmental and energy disturbances in a regional setting. The model accounts for 20 different productive sectors, including 4 supply chain energy industries, and includes information about fScottish households, the Scottish Government and imports and exports to the rest of the UK (RUK) and to the rest of the World (ROW). Wages are determined within the region in an imperfectly competition setting, using a wage curve where the real wage is negatively related to unemployment rate. The labour force is initially assumed fixed. We than release this assumption to allow for free workers interregional migration across UK, occurring in response to the difference between national and regional real wage and unemployment rates. We consider an energy efficiency improvement as being any technological change which allows households to consume the same bundle goods as before but using less physical energy in doing this. The rebound effect is measured as being the ratio between potential energy savings (PES) and actual energy savings (AES). The PES correspond to the pure engineering effect, for example improving efficiency by 10% and saving 10% of energy. The AES are calculated as the proportionate change in a specific energy use, for which efficiency has improved, as the result of the full general equilibrium adjustments. Results from simulations show that increasing household energy efficiency stimulates the Scottish economy through an increase and change in patterns in the domestic aggregate demand. In the long-run central case scenario the regional GDP increases by 0.11%, unemployment rate drops by 0.45% and households consumption increases by 0.4%. The consumption of energy decreases both in household and in production, although the calculated general equilibrium rebound effect is 50%, so that only 50% of the potential energy savings are achieved. By introducing free migrations of workers, we find that in an open region characterised by an integrated labour market, interregional migration of workers may give additional momentum to the economic expansion from the increased household energy efficiency. In fact the net in-migration relieves pressure on the real wage and the cpi, which return to their baseline values in the long-run restoring the lost competitiveness observed in the national case (Lecca et al., 2014). By considering different simulation scenarios we show that there is a friction between the economic expansion from increased household energy efficiency and the rebound effects. Moreover, we show that the economic stimulus from increased energy efficiency in household would be different depending on the precise specification of the impact itself.

Suggested Citation

  • Gioele Figus & Patrizio Lecca & Karen Turner & Peter McGregor, 2016. "Increased energy efficiency in Scottish households: trading-off economic benefits and energy rebound effects?," EcoMod2016 9454, EcoMod.
  • Handle: RePEc:ekd:009007:9454
    as

    Download full text from publisher

    File URL: http://ecomod.net/system/files/ECOM-GF-2016_0.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Daniel Khazzoom, 1987. "Energy Saving Resulting from the Adoption of More Efficient Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-89.
    2. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Layard, Richard & Nickell, Stephen & Jackman, Richard, 2005. "Unemployment: Macroeconomic Performance and the Labour Market," OUP Catalogue, Oxford University Press, number 9780199279173, Decembrie.
    4. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    5. Guerra, Ana-Isabel & Sancho, Ferran, 2010. "Rethinking economy-wide rebound measures: An unbiased proposal," Energy Policy, Elsevier, vol. 38(11), pages 6684-6694, November.
    6. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    7. Sam Anson, 2009. "Rebound and disinvestment effects in oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Working Papers 0901, University of Strathclyde Business School, Department of Economics.
    8. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    9. Jeffrey A. Dubin & Allen K. Miedema & Ram V. Chandran, 1986. "Price Effects of Energy-Efficient Technologies: A Study of Residential Demand for Heating and Cooling," RAND Journal of Economics, The RAND Corporation, vol. 17(3), pages 310-325, Autumn.
    10. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    11. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    12. Peter M. Schwarz & Thomas N. Taylor, 1995. "Cold Hands, Warm Hearth? Climate, Net Takeback, and Household Comfort," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 41-54.
    13. Glomsrod, Solveig & Taoyuan, Wei, 2005. "Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?," Energy Policy, Elsevier, vol. 33(4), pages 525-542, March.
    14. Turner, Karen, 2009. "Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy," Energy Economics, Elsevier, vol. 31(5), pages 648-666, September.
    15. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "The macro-economic rebound effect and the UK economy," Energy Policy, Elsevier, vol. 35(10), pages 4935-4946, October.
    16. Adams, Philip D & Higgs, Peter J, 1990. "Calibration of Computable General Equilibrium Models from Synthetic Benchmark Equilibrium Data Sets," The Economic Record, The Economic Society of Australia, vol. 66(193), pages 110-126, June.
    17. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    18. Philip D. Adams & Peter J. Higgs, 1990. "Calibration of Computable General Equilibrium Models from Synthetic Benchmark Equilibrium Data Sets," The Economic Record, The Economic Society of Australia, vol. 66(2), pages 110-126, June.
    19. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    20. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," Energy Economics, Elsevier, vol. 34(2), pages 461-467.
    21. Hanley, Nick & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2009. "Do increases in energy efficiency improve environmental quality and sustainability?," Ecological Economics, Elsevier, vol. 68(3), pages 692-709, January.
    22. Hayashi, Fumio, 1982. "Tobin's Marginal q and Average q: A Neoclassical Interpretation," Econometrica, Econometric Society, vol. 50(1), pages 213-224, January.
    23. Koesler, Simon & Swales, Kim & Turner, Karen, 2016. "International spillover and rebound effects from increased energy efficiency in Germany," Energy Economics, Elsevier, vol. 54(C), pages 444-452.
    24. Allan, Grant & Hanley, Nick & McGregor, Peter & Swales, Kim & Turner, Karen, 2007. "The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom," Energy Economics, Elsevier, vol. 29(4), pages 779-798, July.
    25. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    26. Paul S. Armington, 1969. "A Theory of Demand for Products Distinguished by Place of Production (Une théorie de la demande de produits différenciés d'après leur origine) (Una teoría de la demanda de productos distinguiénd," IMF Staff Papers, Palgrave Macmillan, vol. 16(1), pages 159-178, March.
    27. Treyz, George I, et al, 1993. "The Dynamics of U.S. Internal Migration," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 209-214, May.
    28. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    29. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim, 2013. "Forward-looking and myopic regional Computable General Equilibrium models: How significant is the distinction?," Economic Modelling, Elsevier, vol. 31(C), pages 160-176.
    30. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    31. Grepperud, Sverre & Rasmussen, Ingeborg, 2004. "A general equilibrium assessment of rebound effects," Energy Economics, Elsevier, vol. 26(2), pages 261-282, March.
    32. Koesler, Simon, 2013. "Catching the rebound: Economy-wide implications of an efficiency shock in the provision of transport services by households," ZEW Discussion Papers 13-082, ZEW - Leibniz Centre for European Economic Research.
    33. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.
    34. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    35. Lin, C.-Y. Cynthia & Zeng, Jieyin (Jean), 2013. "The elasticity of demand for gasoline in China," Energy Policy, Elsevier, vol. 59(C), pages 189-197.
    36. Anson, Sam & Turner, Karen, 2009. "Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Energy Policy, Elsevier, vol. 37(9), pages 3608-3620, September.
    37. Dufournaud, Christian M. & Quinn, John T. & Harrington, Joseph J., 1994. "An Applied General Equilibrium (AGE) analysis of a policy designed to reduce the household consumption of wood in the Sudan," Resource and Energy Economics, Elsevier, vol. 16(1), pages 67-90, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Freire-González, Jaume & Ho, Mun S., 2022. "Policy strategies to tackle rebound effects: A comparative analysis," Ecological Economics, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gioele Figus & Patrizio Lecca & Peter McGregor & Karen Turner, 2017. "Energy efficiency as an instrument of regional development policy? Trading-off the benefits of an economic stimulus and energy rebound effects," Working Papers 1702, University of Strathclyde Business School, Department of Economics.
    2. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    3. Sondes Kahouli & Xavier Pautrel, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," Working Papers 2020.28, Fondazione Eni Enrico Mattei.
    4. Kahouli, Sondes & Pautrel, Xavier, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," FEP: Future Energy Program 308024, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    5. Gioele Figus & J Kim Swales & Karen Turner, 2017. "Can a reduction in fuel use result from an endogenous technical progress in motor vehicles? A partial and general equilibrium analysis," Working Papers 1705, University of Strathclyde Business School, Department of Economics.
    6. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    7. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "Rebound Effects from Increased Efficiency in the Use of Energy by UK Households," SIRE Discussion Papers 2011-34, Scottish Institute for Research in Economics (SIRE).
    10. Tugba Somuncu & Christopher Hannum, 2018. "The Rebound Effect of Energy Efficiency Policy in the Presence of Energy Theft," Energies, MDPI, vol. 11(12), pages 1-28, December.
    11. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    12. Zhou, Meifang & Liu, Yu & Feng, Shenghao & Liu, Yang & Lu, Yingying, 2018. "Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China," Applied Energy, Elsevier, vol. 221(C), pages 280-298.
    13. Chang, Juin-Jen & Wang, Wei-Neng & Shieh, Jhy-Yuan, 2018. "Environmental rebounds/backfires: Macroeconomic implications for the promotion of environmentally-friendly products," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 35-68.
    14. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    15. Lu, Yingying & Liu, Yu & Zhou, Meifang, 2017. "Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China," Energy Economics, Elsevier, vol. 62(C), pages 248-256.
    16. Koesler, Simon & Swales, Kim & Turner, Karen, 2014. "Beyond national economy-wide rebound effects: An applied general equilibrium analysis incorporating international spillover effects," ZEW Discussion Papers 14-025, ZEW - Leibniz Centre for European Economic Research.
    17. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    18. Figus, Gioele & Swales, J.Kim & Turner, Karen, 2018. "Can Private Vehicle-augmenting Technical Progress Reduce Household and Total Fuel Use?," Ecological Economics, Elsevier, vol. 146(C), pages 136-147.
    19. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    20. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.

    More about this item

    Keywords

    Scotland; General equilibrium modeling (CGE); Energy and environmental policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:009007:9454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.