IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v82y2019icp16-25.html
   My bibliography  Save this article

Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)*

* This paper is a replication of an original study

Author

Listed:
  • Henningsen, Arne
  • Henningsen, Geraldine
  • van der Werf, Edwin

Abstract

The ease with which firms can substitute away from energy to other inputs is an important determining factor in the costs of climate change mitigation policies. Climate policy simulation models usually represent this substitutability by using the Constant Elasticity of Substitution (CES) function with parameter values often taken from econometric studies. Hence, the accuracy of the estimated substitution parameters has a strong influence on the validity of the climate policy simulation. In this article, we attempt to replicate the results presented in a widely cited article in this field: Kemfert (1998) (‘Estimated substitution elasticities of a nested CES production function approach for Germany’, Energy Economics, 20, 249–264). We first use the data and software reported in that article and compare our results with those reported in the original study. We then test the same data and a new, more recent, data set on German industrial data with an improved econometric approach. Despite applying various approaches and modifications, we are not able to replicate the results in Kemfert (1998). We furthermore conclude that the data sets that are typically used to estimate nested CES functions often have too few observations and too little independent variation of the explanatory variables to obtain reliable estimates when using a direct non-linear approach.

Suggested Citation

  • Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
  • Handle: RePEc:eee:eneeco:v:82:y:2019:i:c:p:16-25
    DOI: 10.1016/j.eneco.2017.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317304395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    2. White, Kenneth J, 1992. "The Durbin-Watson Test for Autocorrelation in Nonlinear Models," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 370-373, May.
    3. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    4. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    5. Turner, Karen & Hanley, Nick, 2011. "Energy efficiency, rebound effects and the environmental Kuznets Curve," Energy Economics, Elsevier, vol. 33(5), pages 709-720, September.
    6. Jacoby, Henry D. & Reilly, John M. & McFarland, James R. & Paltsev, Sergey, 2006. "Technology and technical change in the MIT EPPA model," Energy Economics, Elsevier, vol. 28(5-6), pages 610-631, November.
    7. Chang, Kuo-Ping, 1994. "Capital-energy substitution and the multi-level CES production function," Energy Economics, Elsevier, vol. 16(1), pages 22-26, January.
    8. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    9. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    10. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    11. Arne Henningsen & Géraldine Henningsen, 2011. "Econometric Estimation of the “Constant Elasticity of Substitution" Function in R: Package micEconCES," IFRO Working Paper 2011/9, University of Copenhagen, Department of Food and Resource Economics.
    12. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    13. Dong, Yan & Whalley, John, 2011. "Carbon motivated regional trade arrangements: Analytics and simulations," Economic Modelling, Elsevier, vol. 28(6), pages 2783-2792.
    14. Keting Shen & John Whalley, 2013. "Capital-Labor-Energy Substitution in Nested CES Production Functions for China," NBER Working Papers 19104, National Bureau of Economic Research, Inc.
    15. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    16. Henningsen, Arne & Henningsen, Géraldine, 2012. "On estimation of the CES production function—Revisited," Economics Letters, Elsevier, vol. 115(1), pages 67-69.
    17. Marcel Timmer & Abdul A. Erumban & Reitze Gouma & Bart Los & Umed Temurshoev & Gaaitzen J. de Vries & I–aki Arto & Valeria Andreoni AurŽlien Genty & Frederik Neuwahl & JosŽ M. Rueda?Cantuche & Joseph , 2012. "The World Input-Output Database (WIOD): Contents, Sources and Methods," IIDE Discussion Papers 20120401, Institue for International and Development Economics.
    18. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
    19. Sam Meng, 2014. "How may a carbon tax transform Australian electricity industry? A CGE analysis," Applied Economics, Taylor & Francis Journals, vol. 46(8), pages 796-812, March.
    20. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    21. Nico Bauer & Lavinia Baumstark & Marian Leimbach, 2012. "The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds," Climatic Change, Springer, vol. 114(1), pages 145-168, September.
    22. Prywes, Menahem, 1986. "A nested CES approach to capital-energy substitution," Energy Economics, Elsevier, vol. 8(1), pages 22-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Rilong & Wang, Haolin & Wen, Zihao & Yuan, Zhen & Yuan, Kaihua & Chunga, Joseph, 2021. "Tracking factor substitution and the rebound effect of China’s agricultural energy consumption: A new research perspective from asymmetric response," Energy, Elsevier, vol. 216(C).
    2. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    3. Amr Khafagy & Mauro Vigani, 2023. "External finance and agricultural productivity growth," Agribusiness, John Wiley & Sons, Ltd., vol. 39(2), pages 448-472, March.
    4. Sriket, Hongsilp & Suen, Richard M.H., 2022. "Sources of economic growth in models with non-renewable resources," Journal of Macroeconomics, Elsevier, vol. 72(C).
    5. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2023. "Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to energy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    6. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    7. Skelton, Alexandra C.H. & Paroussos, Leonidas & Allwood, Julian M., 2020. "Comparing energy and material efficiency rebound effects: an exploration of scenarios in the GEM-E3 macroeconomic model," Ecological Economics, Elsevier, vol. 173(C).
    8. Kuşkaya, Sevda & Bilgili, Faik & Muğaloğlu, Erhan & Khan, Kamran & Hoque, Mohammad Enamul & Toguç, Nurhan, 2023. "The role of solar energy usage in environmental sustainability: Fresh evidence through time-frequency analyses," Renewable Energy, Elsevier, vol. 206(C), pages 858-871.
    9. Khan, Irfan & Hou, Fujun & Zakari, Abdulrasheed & Tawiah, Vincent Konadu, 2021. "The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries," Energy, Elsevier, vol. 222(C).
    10. Luca Spinesi, 2022. "The Environmental Tax: Effects on Inequality and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(3), pages 529-572, July.
    11. Satoshi Nakano & Kazuhiko Nishimura, 2019. "Productivity propagation with networks transformation," Papers 1909.09641, arXiv.org, revised Apr 2020.
    12. Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
    13. Cao, Jing & Ho, Mun S. & Ma, Rong, 2020. "Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data," Energy Economics, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    2. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    3. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    4. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    5. Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
    6. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    8. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    9. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    10. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    11. Knoblach, Michael & Rößler, Martin & Zwerschke, Patrick, 2016. "The Elasticity of Factor Substitution Between Capital and Labor in the U.S. Economy: A Meta-Regression Analysis," CEPIE Working Papers 03/16, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    12. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    13. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    14. Lagomarsino, Elena, 2021. "Which nesting structure for the CES? A new selection approach based on input separability," Economic Modelling, Elsevier, vol. 102(C).
    15. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    16. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    17. G. Mandras & G. Garau, 2015. "Economy-wide rebound effects from an increase in efficiency in the use of energy: the Italian case," Working Paper CRENoS 201520, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    18. Simon Koesler & Michael Schymura, 2012. "Substitution Elasticities for CGE Models," EcoMod2012 4010, EcoMod.
    19. Keting Shen & John Whalley, 2013. "Capital-Labor-Energy Substitution in Nested CES Production Functions for China," NBER Working Papers 19104, National Bureau of Economic Research, Inc.
    20. Paul E. Brockway & Harry Saunders & Matthew K. Heun & Timothy J. Foxon & Julia K. Steinberger & John R. Barrett & Steve Sorrell, 2017. "Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach," Energies, MDPI, vol. 10(1), pages 1-24, January.

    Replication

    This item is a replication of:
  • Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
  • More about this item

    Keywords

    CES; Replication study; Elasticity of substitution; Energy; Climate policy;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998) (Energy Economics 2019) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:82:y:2019:i:c:p:16-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.