IDEAS home Printed from https://ideas.repec.org/r/eee/ecolec/v93y2013icp313-329.html
   My bibliography  Save this item

Index decomposition analysis applied to CO2 emission studies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yue Han & Xiaosan Ge, 2023. "Spatial–Temporal Characteristics and Influencing Factors on Carbon Emissions from Land Use in Suzhou, the World’s Largest Industrial City in China," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
  2. Baran Doda, 2018. "Tales From The Tails: Sector-Level Carbon Intensity Distribution," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 1-27, November.
  3. Yao Qian & Lang Sun & Quanyi Qiu & Lina Tang & Xiaoqi Shang & Chengxiu Lu, 2020. "Analysis of CO 2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China," Energies, MDPI, vol. 13(5), pages 1-21, March.
  4. Jana, Sebak Kumar & Lise, Wietze, 2023. "Carbon Emissions from Energy Use in India: Decomposition Analysis," MPRA Paper 117245, University Library of Munich, Germany.
  5. Xiao, Zhaohua & Du, Limin & Wang, Zheng, 2023. "The Belt, the Road, and the carbon emissions in China," China Economic Review, Elsevier, vol. 78(C).
  6. Santosh Kumar Sahu and Sumedha Kamboj, 2019. "Decomposition Analysis of GHG Emissions In Emerging Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(3), pages 59-77, September.
  7. Shahiduzzaman, Md & Layton, Allan, 2017. "Decomposition analysis for assessing the United States 2025 emissions target: How big is the challenge?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 372-383.
  8. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
  9. Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
  10. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
  11. Rodríguez, Miguel, 2022. "Why do many prospective analyses of CO2 emissions fail? An illustrative example from China," Energy, Elsevier, vol. 244(PB).
  12. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
  13. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
  14. Qi, Tianyu & Weng, Yuyan & Zhang, Xiliang & He, Jiankun, 2016. "An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013," Energy Economics, Elsevier, vol. 60(C), pages 15-22.
  15. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
  16. Vadim V. Krivirotov & Aleksey V. Kalina & Anastasiya I. Savelyeva, 2018. "Energy Efficiency Assessment of Copper Producers: Theory and Practice," Journal of New Economy, Ural State University of Economics, vol. 19(5), pages 107-116, October.
  17. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
  18. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
  19. Peggy Hariwan & Bambang Juanda & Sri Mulatsih & Himawan Hariyoga, 2021. "Analysis of Energy Efficiency on the Manufacturing Industry in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 28-36.
  20. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
  21. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
  22. Feng Xu & Nan Xiang & Jingjing Yan & Lujun Chen & Peter Nijkamp & Yoshiro Higano, 2015. "Dynamic simulation of China’s carbon emission reduction potential by 2020," Letters in Spatial and Resource Sciences, Springer, vol. 8(1), pages 15-27, March.
  23. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
  24. Ščasný, M. & Ang, B.W. & Rečka, L., 2021. "Decomposition analysis of air pollutants during the transition and post-transition periods in the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  25. Branger, Frédéric & Quirion, Philippe, 2015. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Energy Economics, Elsevier, vol. 47(C), pages 189-205.
  26. Paulo M. De Oliveira-De Jesus & John J. Galvis & Daniela Rojas-Lozano & Jose M. Yusta, 2020. "Multitemporal LMDI Index Decomposition Analysis to Explain the Changes of ACI by the Power Sector in Latin America and the Caribbean between 1990–2017," Energies, MDPI, vol. 13(9), pages 1-14, May.
  27. Liu, Xin & Wang, Ping & Song, Hang & Zeng, Xiaoying, 2021. "Determinants of net primary productivity: Low-carbon development from the perspective of carbon sequestration," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  28. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
  29. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
  30. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
  31. Lin, Gang & Jiang, Dong & Fu, Jingying & Wang, Di & Li, Xiang, 2019. "A spatial shift-share decomposition of energy consumption changes in China," Energy Policy, Elsevier, vol. 135(C).
  32. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  33. Wolfgang Koller & Andreas Eder & Bernhard Mahlberg, 2023. "Industry-mix effects at different levels of sectoral disaggregation: a decomposition of inter-country differences in energy costs," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(4), pages 883-897, November.
  34. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
  35. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
  36. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
  37. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
  38. Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
  39. Rongrong Li & Rui Jiang, 2017. "Moving Low-Carbon Construction Industry in Jiangsu Province: Evidence from Decomposition and Decoupling Models," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
  40. Kristiāna Dolge & Dagnija Blumberga, 2021. "Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis," Energies, MDPI, vol. 14(23), pages 1-23, November.
  41. Akbostancı, Elif & Tunç, Gül İpek & Türüt-Aşık, Serap, 2018. "Drivers of fuel based carbon dioxide emissions: The case of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2599-2608.
  42. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
  43. Maamar Traich & Amal Rahmane, 2022. "LMDI decomposition analysis of CO2 emissions in Algeria during 2000-2019 and the role of energy policy in reducing emission," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 83-106.
  44. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
  45. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
  46. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
  47. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
  48. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
  49. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
  50. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
  51. Yuehui Xia & Ting Zhang & Miaomiao Yu & Lingying Pan, 2020. "Regional Disparities and Transformation of Energy Consumption in China Based on a Hybrid Input-Output Analysis," Energies, MDPI, vol. 13(20), pages 1-27, October.
  52. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
  53. Shahiduzzaman, Md & Layton, Allan, 2015. "Decomposition analysis to examine Australia’s 2030 GHGs emissions target: How hard will it be to achieve?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 25-34.
  54. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
  55. Ting Chang & Degang Yang & Jinwei Huo & Fuqiang Xia & Zhiping Zhang, 2018. "Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
  56. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
  57. Andreoni, Valeria, 2022. "Drivers of coal consumption changes: A decomposition analysis for Chinese regions," Energy, Elsevier, vol. 242(C).
  58. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
  59. Rina Wu & Jiquan Zhang & Yuhai Bao & Feng Zhang, 2016. "Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 8(2), pages 1-12, February.
  60. Yuan, Rong & Wang, Juan, 2021. "Impacts of poverty alleviation on household GHG footprints in China," Energy Economics, Elsevier, vol. 103(C).
  61. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
  62. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
  63. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
  64. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
  65. Zhiqian Yu & Dalia Streimikiene & Tomas Balezentis & Rimantas Dapkus, 2017. "Final Energy Consumption Trends and Drivers in Czech Republic and Latvia," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(46), pages 866-866, August.
  66. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
  67. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
  68. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.
  69. Hongkuan Zang & Lirong Zhang & Ye Xu & Wei Li, 2020. "Dynamic Input–Output Analysis of a Carbon Emission System at the Aggregated and Disaggregated Levels: A Case Study in the Northeast Industrial District," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
  70. Kenichi Shimamoto, 2017. "Decomposition analysis of the pollution intensities in the case of the United Kingdom," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1316553-131, January.
  71. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
  72. Jing Meng & Jingwen Huo & Zengkai Zhang & Yu Liu & Zhifu Mi & Dabo Guan & Kuishuang Feng, 2023. "The narrowing gap in developed and developing country emission intensities reduces global trade’s carbon leakage," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  73. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
  74. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
  75. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
  76. Barbara Plank & Nina Eisenmenger & Anke Schaffartzik, 2021. "Do material efficiency improvements backfire?: Insights from an index decomposition analysis about the link between CO2 emissions and material use for Austria," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 511-522, April.
  77. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
  78. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
  79. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
  80. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
  81. Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
  82. Battisti, L., 2023. "Energy, power, and greenhouse gas emissions for future transition scenarios," Energy Policy, Elsevier, vol. 179(C).
  83. Kekui Chen & Jianming Fu & Yun Gong & Jian Wang & Shilin Lv & Yajie Liu & Jingyun Li, 2022. "Study on the Influencing Factors of CO 2 from the Perspective of CO 2 Mitigation Potentials," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
  84. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
  85. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
  86. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
  87. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
  88. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
  89. Xingpeng Chen & Jiaxing Pang & Zilong Zhang & Hengji Li, 2014. "Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-14, December.
  90. Baran Doda, 2016. "Tales from the tails: Sector-level carbon intensity distribution," GRI Working Papers 252, Grantham Research Institute on Climate Change and the Environment.
  91. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
  92. Tianxiang Li & Tomas Baležentis & Lijuan Cao & Jing Zhu & Irena Kriščiukaitienė & Rasa Melnikienė, 2016. "Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach," Sustainability, MDPI, vol. 8(12), pages 1-24, November.
  93. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
  94. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
  95. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "The EU Emission Trading Scheme: sectoral allocation and factors determining emission changes," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(1), pages 1-14, March.
  96. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
  97. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
  98. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
  99. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
  100. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
  101. Rina Wu & Jiquan Zhang & Yuhai Bao & Quan Lai & Siqin Tong & Youtao Song, 2016. "Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
  102. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
  103. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
  104. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
  105. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
  106. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
  107. Pan, Xiongfeng & Guo, Shucen & Xu, Haitao & Tian, Mengyuan & Pan, Xianyou & Chu, Junhui, 2022. "China's carbon intensity factor decomposition and carbon emission decoupling analysis," Energy, Elsevier, vol. 239(PC).
  108. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
  109. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
  110. Rodríguez, Miguel & Pena-Boquete, Yolanda, 2017. "Carbon intensity changes in the Asian Dragons. Lessons for climate policy design," Energy Economics, Elsevier, vol. 66(C), pages 17-26.
  111. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
  112. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  113. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
  114. María A. Quintás & Ana I. Martínez-Senra & Antonio Sartal, 2018. "The Role of SMEs’ Green Business Models in the Transition to a Low-Carbon Economy: Differences in Their Design and Degree of Adoption Stemming from Business Size," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
  115. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
  116. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
  117. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
  118. Sandrine Mathy & P. Menanteau, 2020. "Mitigation strategies to enhance the ambition of the nationally determined contributions : an analysis of 4 European countries with the decarbonization wedges methodology," Post-Print hal-03190845, HAL.
  119. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
  120. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
  121. Shahiduzzaman, Md. & Layton, Allan, 2015. "Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis," Applied Energy, Elsevier, vol. 150(C), pages 25-35.
  122. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
  123. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
  124. Takayabu, Hirotaka, 2020. "CO2 mitigation potentials in manufacturing sectors of 26 countries," Energy Economics, Elsevier, vol. 86(C).
  125. Jin-Wei Wang & Hua Liao & Bao-Jun Tang & Ruo-Yu Ke & Yi-Ming Wei, 2017. "Is the CO2 Emissions Reduction from Scale Change, Structural Change or Technology Change? Evidence from Non-metallic Sector of 11 Major Economies in 1995-2009," CEEP-BIT Working Papers 101, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  126. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
  127. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
  128. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.
  129. Goh, Tian & Ang, B.W., 2018. "Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes," Energy Policy, Elsevier, vol. 113(C), pages 651-662.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.