IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Technical Efficiency of Australian Wool Production: Point and Confidence Interval Estimates

  • Iain Fraser

    (LaTrobe University)

  • William C. Horrace

    (Syracuse University)

A balanced panel of data is used to estimate technical efficiency, employing a fixed-effects stochastic frontier specification for wool producers in Australia. Both point estimates and confidence intervals for technical efficiency are reported. The confidence intervals are constructed using the Multiple Comparisons with the Best (MCB) procedure of Horrace and Schmidt (2000). The confidence intervals make explicit the precision of the technical efficiency estimates and underscore the dangers of drawing inferences based solely on point estimates. Additionally, they allow identification of wool producers that are statistically efficient and those that are statistically inefficient. The data reveal at the 95% confidence level that twenty-one of the twenty-six wool farms analyzed may be efficient.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://econwpa.repec.org/eps/pe/papers/0206/0206001.pdf
Download Restriction: no

Paper provided by EconWPA in its series Public Economics with number 0206001.

as
in new window

Length: 34 pages
Date of creation: 19 Jun 2002
Date of revision: 11 May 2003
Handle: RePEc:wpa:wuwppe:0206001
Note: Type of Document - Acrobat PDF; prepared on IBM PC; to print on HP; pages: 34; figures: included/request from author/draw your own. Multiple comparison procedures applied to wool production
Contact details of provider: Web page: http://econwpa.repec.org

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence, Denis & Hone, Phillip, 1981. "Relative Economic Efficiency in the Australian Grazing Industry," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 49(01), April.
  2. Park, B.U. & Simar, L., 1992. "Efficient Semiparametric Estimation in Stochastic Frontier Model," Papers 9201, Catholique de Louvain - Institut de statistique.
  3. Cornwell, C. & Schmidt, P., 1993. "Production Frontiers and Efficiency Measurement," Papers 427e, Georgia - College of Business Administration, Department of Economics.
  4. William C. Horrace & Peter Schmidt, 2000. "Multiple comparisons with the best, with economic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-26.
  5. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
  6. William C. Horrace & Peter Schmidt, 2002. "Confidence Statements for Efficiency Estimates from Stochastic Frontier Models," Econometrics 0206006, EconWPA.
  7. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
  8. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
  9. Coelli, Tim J. & Battese, George E., 1994. "Identification of Factors which Influence the Technical Inefficiency of Indian Farmers," 1994 Conference (38th), February 8-10, 1994, Wellington, New Zealand 148110, Australian Agricultural and Resource Economics Society.
  10. George E. Battese & Lennart Hjalmarsson & Almas Heshmati, 2000. "Efficiency of labour use in the Swedish banking industry: a stochastic frontier approach," Empirical Economics, Springer, vol. 25(4), pages 623-640.
  11. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
  12. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
  13. Kim, Yangseon & Schmidt, Peter, 2008. "Marginal Comparisons With the Best and the Efficiency Measurement Problem," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 253-260, April.
  14. Kim, H Youn, 1992. "The Translog Production Function and Variable Returns to Scale," The Review of Economics and Statistics, MIT Press, vol. 74(3), pages 546-52, August.
  15. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
  16. Kalirajan, K P & Shand, R T, 1999. " Frontier Production Functions and Technical Efficiency Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 13(2), pages 149-72, April.
  17. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  18. Haszler, Henry, et al, 1996. "The Wool Debt, the Wool Stockpile and the National Interest: Did the Garnaut Committee Get It Right?," The Economic Record, The Economic Society of Australia, vol. 72(218), pages 260-71, September.
  19. SIMAR, Léopold, . "Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric metods with bootstrapping," CORE Discussion Papers RP -995, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  20. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(03), December.
  21. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
  22. Fraser, I. & Cordina, D., 1999. "An application of data envelopment analysis to irrigated dairy farms in Northern Victoria, Australia," Agricultural Systems, Elsevier, vol. 59(3), pages 267-282, March.
  23. Ahmad, Munir & Boris E., Bravo-Ureta, 1996. "Technical efficiency measures for dairy farms using panel data: a comparison of alternative model specifications," MPRA Paper 37703, University Library of Munich, Germany.
  24. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  25. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
  26. Fraser, Iain & Hone, Phillip, 2001. "Farm-level efficiency and productivity measurement using panel data: wool production in south-west Victoria," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(2), June.
  27. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-74, October.
  28. Andrew N. Kleit & Dek Terrell, 2001. "Measuring Potential Efficiency Gains From Deregulation Of Electricity Generation: A Bayesian Approach," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 523-530, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwppe:0206001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.