IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/11132.html
   My bibliography  Save this paper

Forecast Sensitivity to Global Risks : A BVAR Analysis

Author

Listed:
  • Heather Jane Ruberl
  • Remzi Baris Tercioglu
  • Elderfield,Adam

Abstract

Developing countries face uncertainties driven by global macroeconomic variables over which they have little to no control. Key exogenous factors faced by most developing countries include interest rates in high-income countries, commodity prices, global demand for exports, and remit- tance inflows. While these variables are sensitive to common global shocks, they also exhibit idiosyncratic fluctuations. This paper employs a Bayesian Vector Autoregression model to capture interdependencies of global variables and simulates global risks using the empirical joint distribution of global shock as captured by joint Bayesian Vector Autoregression errors. The simulated shocks are then integrated into the World Bank’s macro-structural model to assess how a range of potential global disturbances could impact economic outcomes across countries. The methodology is applied to 115 countries, using the World Bank’s fall 2024 edition of the Macro-Poverty Outlook forecasts as a baseline. Although the individual country results are heterogeneous, the aggregate distribution of gross domestic product outcomes across the 115 countries suggests that global factors influence gross domestic product levels in individual developing countries by less than plus or minus 2 percent in most years, but by between 2 and 4 percent in about 3 in 10 years.

Suggested Citation

  • Heather Jane Ruberl & Remzi Baris Tercioglu & Elderfield,Adam, 2025. "Forecast Sensitivity to Global Risks : A BVAR Analysis," Policy Research Working Paper Series 11132, The World Bank.
  • Handle: RePEc:wbk:wbrwps:11132
    as

    Download full text from publisher

    File URL: https://documents.worldbank.org/curated/en/099410405272518099/pdf/IDU-14361341-7735-45f8-8d13-d8d7316b0d38.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
    2. Lubik, Thomas A. & Schorfheide, Frank, 2007. "Do central banks respond to exchange rate movements? A structural investigation," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1069-1087, May.
    3. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    4. Giuliano,Fernando Mauro & Navia Simon,Daniel & Ruberl,Heather Jane, 2024. "The Macroeconomic Impact of Climate Shocks in Uruguay," Policy Research Working Paper Series 10740, The World Bank.
    5. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    6. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    7. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    8. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    9. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    10. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    11. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    12. Fasolo, Angelo M. & Araujo, Eurilton & Jorge, Marcos Valli & Kornelius, Alexandre & Marinho, Leonardo Sousa Gomes, 2024. "Brazilian macroeconomic dynamics redux: Shocks, frictions, and unemployment in SAMBA model," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(2).
    13. Jordi Galí & Tommaso Monacelli, 2005. "Monetary Policy and Exchange Rate Volatility in a Small Open Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 707-734.
    14. Rey, Hélène, 2015. "Dilemma not Trilemma: The Global Financial Cycle and Monetary Policy Independence," CEPR Discussion Papers 10591, C.E.P.R. Discussion Papers.
    15. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    16. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    17. Juvenal, Luciana & Petrella, Ivan, 2024. "Reprint of “Unveiling the dance of commodity prices and the global financial cycle”," Journal of International Economics, Elsevier, vol. 149(C).
    18. Kalemli-Özcan, Sebnem, 2019. "US Monetary Policy and International Risk Spillovers," CEPR Discussion Papers 14053, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "Bayesian local projections," Working Papers hal-03373574, HAL.
    2. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    3. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    4. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    5. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    6. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    7. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    8. Boris Demeshev & Oxana Malakhovskaya, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
    9. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    10. Kaabia, Olfa & Abid, Ilyes & Guesmi, Khaled, 2013. "Does Bayesian shrinkage help to better reflect what happened during the subprime crisis?," Economic Modelling, Elsevier, vol. 31(C), pages 423-432.
    11. Fady Barsoum, 2013. "The Effects of Monetary Policy Shocks on a Panel of Stock Market Volatilities: A Factor-Augmented Bayesian VAR Approach," Working Paper Series of the Department of Economics, University of Konstanz 2013-15, Department of Economics, University of Konstanz.
    12. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    13. Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
    14. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    15. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    16. Dragan Tevdovski & Goran Petrevski & Jane Bogoev, 2019. "The effects of macroeconomic policies under fixed exchange rates: A Bayesian VAR analysis," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 32(1), pages 2138-2160, January.
    17. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    18. Anders Warne & Günter Coenen & Kai Christoffel, 2017. "Marginalized Predictive Likelihood Comparisons of Linear Gaussian State‐Space Models with Applications to DSGE, DSGE‐VAR, and VAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 103-119, January.
    19. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    20. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    21. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:11132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.