IDEAS home Printed from https://ideas.repec.org/p/srt/wpaper/3014.html
   My bibliography  Save this paper

Green inventions and greenhouse gas emission dynamics: A close examination of provincial Italian data

Author

Listed:
  • Ding Weina

    (Beijing Institute of Technology, Beijing, China.)

  • Marianna Gilli

    (Department of Economics and Management, University of Ferrara, Italy.)

  • Massimiliano Mazzanti

    (Department of Economics and Management, University of Ferrara, Italy.)

  • Francesco Nicolli

    (IRCReS-CNR, Italy; Department of Economics and Management, University of Ferrara, Italy.)

Abstract

Eco-innovation plays a crucial role in reducing carbon emissions. Exploiting the consolidated IPAT / STIRPAT framework, this paper studies whether a relationship exists between green technological change and both CO2 emissions and emission efficiency (CO2/VA), exploiting a rich panel covering 95 Italian provinces from 1990-2010. The main regression results suggest that green technology has not yet played a significant role in promoting environmental protection, although it significantly improved significantly environmental productivity. Notably, this result is not driven by regional differences, and the main evidence is consistent among different areas of the country.

Suggested Citation

  • Ding Weina & Marianna Gilli & Massimiliano Mazzanti & Francesco Nicolli, 2014. "Green inventions and greenhouse gas emission dynamics: A close examination of provincial Italian data," SEEDS Working Papers 3014, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2014.
  • Handle: RePEc:srt:wpaper:3014
    as

    Download full text from publisher

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/3014.pdf
    File Function: First version, 2014
    Download Restriction: no

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/3014.pdf
    File Function: Revised version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    2. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    3. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    4. Gilli, Marianna & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Innovation complementarity and environmental productivity effects: Reality or delusion? Evidence from the EU," Ecological Economics, Elsevier, vol. 103(C), pages 56-67.
    5. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    6. Kim, Kyunam & Kim, Yeonbae, 2012. "International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition," Energy Economics, Elsevier, vol. 34(5), pages 1724-1741.
    7. Emilio Zagheni, 2011. "The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?," Demography, Springer;Population Association of America (PAA), vol. 48(1), pages 371-399, February.
    8. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    9. Giovanni Marin & Massimiliano Mazzanti, 2013. "The evolution of environmental and labor productivity dynamics," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 357-399, April.
    10. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    11. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    12. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, Open Access Journal, vol. 9(4), pages 1-14, April.
    2. Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    3. Marianna Gilli & Massimiliano Mazzanti & Giovanni Morleo, 2017. "Environmental performances in Europe: An empirical analysis of the convergence among manufacturing sectors," Revue d'économie industrielle, De Boeck Université, vol. 0(3), pages 21-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding Weina & Marianna Gilli & Massimiliano Mazzanti & Francesco Nicolli, 2016. "Green inventions and greenhouse gas emission dynamics: a close examination of provincial Italian data," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 247-263, April.
    2. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    3. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    5. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    6. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    7. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.
    8. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    9. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    10. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    11. Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    12. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    13. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    14. Davide Antonioli & Grazia Cecere & Massimiliano Mazzanti, 2018. "Information communication technologies and environmental innovations in firms: joint adoptions and productivity effects," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(11), pages 1905-1933, September.
    15. Grazia Cecere & Sascha Rexhäuser & Patrick Schulte, 2019. "From less promising to green? Technological opportunities and their role in (green) ICT innovation," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(1), pages 45-63, January.
    16. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    17. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    18. Marius Ley, Tobias Stucki, and Martin Woerter, 2016. "The Impact of Energy Prices on Green Innovation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Shi, Beibei & Feng, Chen & Qiu, Meng & Ekeland, Anders, 2018. "Innovation suppression and migration effect: The unintentional consequences of environmental regulation," China Economic Review, Elsevier, vol. 49(C), pages 1-23.
    20. Esfandiar Maasoumi & Almas Heshmati & Inhee Lee, 2021. "Green innovations and patenting renewable energy technologies," Empirical Economics, Springer, vol. 60(1), pages 513-538, January.

    More about this item

    Keywords

    CO2 emission; Technological Change; Green Patents; IPAT; Environmental Performance;
    All these keywords.

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:srt:wpaper:3014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.sustainability-seeds.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alessandro Palma (email available below). General contact details of provider: http://www.sustainability-seeds.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.