IDEAS home Printed from https://ideas.repec.org/p/rjr/wpiecf/100201.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes

Author

Listed:
  • Matei, Marius

    (Ph.D. Student at ESADE Business School, Department of Finance, Barcelona and at National Institute of Economic Research, Romanian Academy, Bucharest)

Abstract

The thesis proposes to assess the risk topic in the context of foreign investment decisions. In identifying two main risk-related concepts, I have split risks in two categories using a unique criterion: the ratio between the endogenous and exogenous content of the problem. According to it, I have built a pool of risks that the company may have entirely or partially under control (forming the endogenous part of the problem), and a pool with exogenous risks that the company cannot control at all, but can assess and build strategies for their management (forming the exogenous part of the problem). In each category I have identified one source of risk, representing the most important of all risks belonging to the same pool. For the endogenous risks part, credit risk (in its extensive version counterparty risk) was selected. Related to this, there have been additionally discussed the topics of systemic risk and of the risk associated to the impact of the activity of the international rating agencies on the firm financing problem when a company proceeded to debt issuance. The other half of the problem involves the risk of the sector the company activates in. I have found that the risk assessment in this category became an econometric problem of volatility forecasting for a portfolio of a number of selected returns. The discussion complicates given the following factors: 1. The scientific world has not reached yet to a consensus on the superiority of a certain model or group of models that measures volatility. As such, forecasted volatility estimates may depend on the model or methodologies to be used, type of data frequency (high or low), selection of the error statistics etc. As such, decision making as regards the opportunity of the investment becomes highly dependent on econometric choices to be made. 2. Multivariate models are computationally intensive due to the parameter estimation problem. If a large number of stocks are included in the portfolio, the number of estimations to be done would be so high that the problem would be extremely difficult to be technically undertaken. 3. Due to high correlation of stocks, the estimation problem becomes particularly imprecise and computationally difficult. As a solution to such problems, I have justified the superiority of one autoregressive heteroskedastic model (PC-GARCH) considering not only estimation performance but also cost saving component. For this purpose, I have run an empirical exercise with a portfolio formed of seven stocks belonging to the US IT sector (Adobe, Apple, Autodesk, Cisco, Dell, Microsoft and 3M) in order to evidentiate advantages of this model. They may be summarized as it follows: PC-GARCH • Minimizes computational efforts (by transforming multivariate GARCH models into univariate ones), by reducing significantly the computational time and getting rid of any problem that may arise from complex data manipulations; • Ensures a tight control of the amount of “noise” due to reducing the number of variables to fewer principal components. This may prove benefic since it may result in more stable correlation estimates; • Produces volatilities and correlations for all variables in the system, including those for which direct GARCH estimation is computationally difficult. As such, I’ve concluded that when using large portfolios formed of hundreds or thousands of stocks, for the scope of volatility (and therefore risk) forecasting, PCGARCH is the most appropriate model to be used.

Suggested Citation

  • Matei, Marius, 2010. "Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes," Working Papers of Institute for Economic Forecasting 100201, Institute for Economic Forecasting.
  • Handle: RePEc:rjr:wpiecf:100201
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/RePEc/WorkingPapers/wpiecf100201.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuel S. Santos & Michael Woodford, 1997. "Rational Asset Pricing Bubbles," Econometrica, Econometric Society, vol. 65(1), pages 19-58, January.
    2. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. Dimson, Elroy & Marsh, Paul, 1990. "Volatility forecasting without data-snooping," Journal of Banking & Finance, Elsevier, vol. 14(2-3), pages 399-421, August.
    6. Hellwig, Martin, 1994. "Liquidity provision, banking, and the allocation of interest rate risk," European Economic Review, Elsevier, vol. 38(7), pages 1363-1389, August.
    7. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    8. Schwert, G William & Seguin, Paul J, 1990. "Heteroskedasticity in Stock Returns," Journal of Finance, American Finance Association, vol. 45(4), pages 1129-1155, September.
    9. St. Pierre, Eileen F., 1998. "Estimating EGARCH-M models: Science or art?," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(2), pages 167-180.
    10. Matei, Marius, 2009. "Assessing Volatility Forecasting Models: Why GARCH Models Take the Lead," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 42-65, December.
    11. Dilip Abreu & Markus K. Brunnermeier, 2003. "Bubbles and Crashes," Econometrica, Econometric Society, vol. 71(1), pages 173-204, January.
    12. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    13. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    14. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, "undated". "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
    15. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    16. Balaban, Ercan, 2004. "Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate," Economics Letters, Elsevier, vol. 83(1), pages 99-105, April.
    17. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    18. Lee, Keun Yeong, 1991. "Are the GARCH models best in out-of-sample performance?," Economics Letters, Elsevier, vol. 37(3), pages 305-308, November.
    19. Hancock, Diana & Wilcox, James A, 1996. "Intraday Management of Bank Reserves: The Effects of Caps and Fees on Daylight Overdrafts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(4), pages 870-908, November.
    20. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    21. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    22. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    23. James J. McAndrews & Samira Rajan, 2000. "The timing and funding of Fedwire funds transfers," Economic Policy Review, Federal Reserve Bank of New York, issue Jul, pages 17-32.
    24. Albu, Lucian Liviu, 2003. "Short-Term Forecast," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 197-199, June.
    25. Mapa, Dennis S., 2004. "A Forecast Comparison of Financial Volatility Models: GARCH (1,1) is not Enough," MPRA Paper 21028, University Library of Munich, Germany.
    26. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
    27. A. A. Elimam & M. Girgis & S. Kotob, 1997. "A Solution to Post Crash Debt Entanglements in Kuwait's al-Manakh Stock Market," Interfaces, INFORMS, vol. 27(1), pages 89-106, February.
    28. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    29. Jordan, John S. & Peek, Joe & Rosengren, Eric S., 2000. "The Market Reaction to the Disclosure of Supervisory Actions: Implications for Bank Transparency," Journal of Financial Intermediation, Elsevier, vol. 9(3), pages 298-319, July.
    30. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    31. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    32. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    33. Jean Dermine, 1996. "Comment on the paper by NIKLAUS BLATTNER "Capital Adequacy Regulation"," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 132(IV), pages 679-682, December.
    34. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
    35. Wicker,Elmus, 1996. "The Banking Panics of the Great Depression," Cambridge Books, Cambridge University Press, number 9780521562614, November.
    36. A. W. Coats, 1995. "Comment," History of Political Economy, Duke University Press, vol. 27(5), pages 157-161, Supplemen.
    37. Nastac, Iulian & Dobrescu, Emilian & Pelinescu, Elena, 2007. "Neuro-Adaptive Model for Financial Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 4(3), pages 19-41, September.
    38. Tse, Y. K., 1991. "Stock returns volatility in the Tokyo stock exchange," Japan and the World Economy, Elsevier, vol. 3(3), pages 285-298, November.
    39. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    40. Brooks, Chris & Burke, Simon P., 1998. "Forecasting exchange rate volatility using conditional variance models selected by information criteria," Economics Letters, Elsevier, vol. 61(3), pages 273-278, December.
    41. Pafka, Szilárd & Kondor, Imre, 2001. "Evaluating the RiskMetrics methodology in measuring volatility and Value-at-Risk in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 305-310.
    42. Philippe Jorion, 1996. "Risk and Turnover in the Foreign Exchange Market," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 19-40, National Bureau of Economic Research, Inc.
    43. Aharony, Joseph & Swary, Itzhak, 1996. "Additional evidence on the information-based contagion effects of bank failures," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 57-69, January.
    44. Chiara Pederzoli, 2006. "Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(1), pages 41-59.
    45. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    46. Dospinescu, Andrei Silviu, 2005. "Combining The Forecasts Using A Statistical Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 2(2), pages 72-84.
    47. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    48. Scutaru, Cornelia & Saman, Corina & Stanica, Cristian, 2008. "Predictability And Complexity In Macroeconomics. The Case Of Gross Fixed Capital Formation In The Romanian Economy," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 5(4), pages 196-205, December.
    49. Allen, Franklin & Gale, Douglas, 2000. "Bubbles and Crises," Economic Journal, Royal Economic Society, vol. 110(460), pages 236-255, January.
    50. Angelini, P. & Maresca, G. & Russo, D., 1996. "Systemic risk in the netting system," Journal of Banking & Finance, Elsevier, vol. 20(5), pages 853-868, June.
    51. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    52. Bryant, John, 1980. "A model of reserves, bank runs, and deposit insurance," Journal of Banking & Finance, Elsevier, vol. 4(4), pages 335-344, December.
    53. Furfine, Craig H, 2003. "Interbank Exposures: Quantifying the Risk of Contagion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(1), pages 111-128, February.
    54. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    55. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    56. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    57. Richard J. Herring & Susan Wachter, 1999. "Real Estate Booms and Banking Busts: An International Perspective," Center for Financial Institutions Working Papers 99-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    58. Duffie, Darrell & Huang, Ming, 1996. "Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-949, July.
    59. George G. Kaufman, 1996. "Bank Failures, Systemic Risk, and Bank Regulation," Cato Journal, Cato Journal, Cato Institute, vol. 16(1), pages 17-45, Spring/Su.
    60. David Walsh & Glenn Yu-Gen Tsou, 1998. "Forecasting index volatility: sampling interval and non-trading effects," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 477-485.
    61. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    2. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    6. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    7. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    8. Twm Evans & David McMillan, 2007. "Volatility forecasts: the role of asymmetric and long-memory dynamics and regional evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 17(17), pages 1421-1430.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    10. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    11. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    12. repec:awi:wpaper:0472 is not listed on IDEAS
    13. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    14. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    15. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    16. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    17. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    18. Kian Teng Kwek & Kuan Nee Koay, 2006. "Exchange rate volatility and volatility asymmetries: an application to finding a natural dollar currency," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 307-323.
    19. Eskandar A. Tooma, 2003. "Modeling and Forecasting Egyptian Stock Market Volatility Before and After Price Limits," Working Papers 0310, Economic Research Forum, revised Apr 2003.
    20. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    21. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.

    More about this item

    Keywords

    risk; endogeneity; exogeneity; credit risk; systemic risk; counterparty risk; rating; volatility; forecasting; GARCH; PC-GARCH; principal components; autocorrelation; heteroskedasticity; orthogonality;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:wpiecf:100201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.