IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v61y1998i3p273-278.html
   My bibliography  Save this article

Forecasting exchange rate volatility using conditional variance models selected by information criteria

Author

Listed:
  • Brooks, Chris
  • Burke, Simon P.

Abstract

No abstract is available for this item.

Suggested Citation

  • Brooks, Chris & Burke, Simon P., 1998. "Forecasting exchange rate volatility using conditional variance models selected by information criteria," Economics Letters, Elsevier, vol. 61(3), pages 273-278, December.
  • Handle: RePEc:eee:ecolet:v:61:y:1998:i:3:p:273-278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(98)00178-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, C Q & Tsay, R S, 1992. "Nonlinear Time-Series Analysis of Stock Volatilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 165-185, Suppl. De.
    2. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    3. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    6. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, April.
    2. Matei, Marius, 2010. "Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes," Working Papers of Institute for Economic Forecasting 100201, Institute for Economic Forecasting.
    3. Brooks, Chris & Burke, Simon P. & Persand, Gita, 2001. "Benchmarks and the accuracy of GARCH model estimation," International Journal of Forecasting, Elsevier, vol. 17(1), pages 45-56.
    4. Shaun Bond & Stephen Satchell, 2006. "Asymmetry and downside risk in foreign exchange markets," The European Journal of Finance, Taylor & Francis Journals, vol. 12(4), pages 313-332.
    5. Balaban, Ercan, 2004. "Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate," Economics Letters, Elsevier, vol. 83(1), pages 99-105, April.
    6. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    7. Alessandra Pasqualina Viola & Marcelo Cabus Klotzle & Antonio Carlos Figueiredo Pinto & Wagner Piazza Gaglianone, 2017. "Predicting Exchange Rate Volatility in Brazil: an approach using quantile autoregression," Working Papers Series 466, Central Bank of Brazil, Research Department.
    8. Sohn, So Young & Lim, Michael, 2007. "Hierarchical forecasting based on AR-GARCH model in a coherent structure," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1033-1040, January.
    9. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    10. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing, vol. 32(4), pages 445-463, October.
    11. repec:spr:fininn:v:3:y:2017:i:1:d:10.1186_s40854-017-0071-z is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:61:y:1998:i:3:p:273-278. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.