IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v37y1991i3p305-308.html
   My bibliography  Save this article

Are the GARCH models best in out-of-sample performance?

Author

Listed:
  • Lee, Keun Yeong

Abstract

No abstract is available for this item.

Suggested Citation

  • Lee, Keun Yeong, 1991. "Are the GARCH models best in out-of-sample performance?," Economics Letters, Elsevier, vol. 37(3), pages 305-308, November.
  • Handle: RePEc:eee:ecolet:v:37:y:1991:i:3:p:305-308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0165-1765(91)90227-C
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    2. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    3. Matei, Marius, 2010. "Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes," Working Papers of Institute for Economic Forecasting 100201, Institute for Economic Forecasting.
    4. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
    5. Balaban, Ercan, 2004. "Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate," Economics Letters, Elsevier, vol. 83(1), pages 99-105, April.
    6. Wei Liu & Bruce Morley, 2009. "Volatility Forecasting in the Hang Seng Index using the GARCH Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 51-63, March.
    7. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    8. repec:spr:annopr:v:262:y:2018:i:2:d:10.1007_s10479-015-1975-5 is not listed on IDEAS
    9. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing, vol. 32(4), pages 445-463, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:37:y:1991:i:3:p:305-308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.