IDEAS home Printed from https://ideas.repec.org/p/ris/adbiwp/1301.html
   My bibliography  Save this paper

Regional Cooperation for Improving Agriculture Production Efficiency: A Strategic Tool for Emission Reduction

Author

Listed:
  • Zaman, Kazi Arif Uz

    (Asian Development Bank Institute)

Abstract

The growing population and climatic uncertainties have compelled producers to undertake faster exploitation of the resources in agricultural production to meet global food security, which, in turn, leads to unsustainable and input-led inefficient production growth. The problem is further exacerbated by the increasing emission of GHGs from this production process. We suggest a solution to this by advocating the role of regional cooperation to increase the technical efficiency level in the agricultural production of countries through technology transfer, knowledge sharing, capacity building, and adequate investment under the regional cooperation framework. Concurrently, we link this improvement of production efficiency with the reduction of emissions both theoretically and empirically for all Asian subregions. We first adopt the stochastic frontier model—a widely used statistical technique that frames the production functions while estimating the inefficiencies of economic units. Using 2010–2016 panel data on agriculture production and five inputs—land, labor, capital, fertilizer, and energy—we estimate the agriculture production efficiencies of the countries under five Asian subregions. Estimations reveal that West Asia, Southeast Asia, South Asia, East Asia, and Central Asia have agriculture production efficiencies of 70%, 85%, 66%, 92%, and 76%, respectively. Following the estimations and other calculations, we find that with concerted efforts toward optimizing production efficiencies under (sub)regional cooperation frameworks, an annual emission of 384.5 megatons of CO2eq GHG could have been reduced in Asia while keeping the production at the current level. The potential reduction of emissions equals 16.8% of Asia’s total emissions originating from agricultural activities and 7.1% of that of global emissions.

Suggested Citation

  • Zaman, Kazi Arif Uz, 2022. "Regional Cooperation for Improving Agriculture Production Efficiency: A Strategic Tool for Emission Reduction," ADBI Working Papers 1301, Asian Development Bank Institute.
  • Handle: RePEc:ris:adbiwp:1301
    as

    Download full text from publisher

    File URL: https://www.adb.org/sites/default/files/publication/766596/adbi-wp1301.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyle Emerick & Alain de Janvry & Elisabeth Sadoulet & Manzoor H. Dar, 2016. "Technological Innovations, Downside Risk, and the Modernization of Agriculture," American Economic Review, American Economic Association, vol. 106(6), pages 1537-1561, June.
    2. Anton Cheremukhin & Mikhail Golosov & Sergei Guriev & Aleh Tsyvinski, 2017. "The Industrialization and Economic Development of Russia through the Lens of a Neoclassical Growth Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(2), pages 613-649.
    3. Husmann, Christine & von Braun, Joachim & Badiane, Ousmane & Akinbamijo, Yemi & Abiodun, Fatunbi Oluwole & Virchow, Detlef, 2015. "Tapping Potentials of Innovation for Food Security and Sustainable Agricultural Growth: An Africa-Wide Perspective," Working Papers 228855, University of Bonn, Center for Development Research (ZEF).
    4. Lajos Baráth & Imre Fertő, 2017. "Productivity and Convergence in European Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 228-248, February.
    5. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    6. Simrit Kaur & Harpreet Kaur, 2016. "Climate Change, Food Security, and Water Management in South Asia: Implications for Regional Cooperation," Emerging Economy Studies, International Management Institute, vol. 2(1), pages 1-18, May.
    7. Amanor, Kojo S. & Chichava, Sérgio, 2016. "South–South Cooperation, Agribusiness, and African Agricultural Development: Brazil and China in Ghana and Mozambique," World Development, Elsevier, vol. 81(C), pages 13-23.
    8. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    9. Terence Dawson & Anita Perryman & Tom Osborne, 2016. "Modelling impacts of climate change on global food security," Climatic Change, Springer, vol. 134(3), pages 429-440, February.
    10. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    11. Riccardo Crescenzi & Fabrizio De Filippis & Fabio Pierangeli, 2015. "In Tandem for Cohesion? Synergies and Conflicts between Regional and Agricultural Policies of the European Union," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 681-704, April.
    12. Juma, Calestous, 2015. "The New Harvest: Agricultural Innovation in Africa," OUP Catalogue, Oxford University Press, number 9780190237233, Decembrie.
    13. Massimo Filippini & Nevenka Hrovatin & Jelena Zorić, 2008. "Cost efficiency of Slovenian water distribution utilities: an application of stochastic frontier methods," Journal of Productivity Analysis, Springer, vol. 29(2), pages 169-182, April.
    14. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    15. Farid Khan & Ruhul Salim & Harry Bloch, 2015. "Nonparametric estimates of productivity and efficiency change in Australian Broadacre Agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(3), pages 393-411, July.
    16. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    17. Nan Jiang & Basil Sharp, 2015. "Technical efficiency and technological gap of New Zealand dairy farms: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 44(1), pages 39-49, August.
    18. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    19. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    20. Florin Marius Pavelescu, 2010. "An Extensive Study on the Disturbances Generated by Collinearity in a Linear Regression Model with Three Explanatory Variables," Romanian Journal of Economics, Institute of National Economy, vol. 31(2(40)), pages 65-93, December.
    21. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    22. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    23. Luis Orea & Alan Wall, 2016. "Measuring Eco-efficiency Using the Stochastic Frontier Analysis Approach," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 275-297, Springer.
    24. Battese, George E. & Coelli, Tim J. & Colby, T.C., 1989. "Estimation of Frontier Production Functions and the Efficiencies of Indian Farms Using Panel Data from ICRISAT's Village Level Studies," 1989 Conference (33rd), February 7-9, 1989, Christchurch, New Zealand 144383, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    2. Althaler, Karl S. & Slavova, Tatjana, 2000. "DEA Problems under Geometrical or Probability Uncertainties of Sample Data," Economics Series 89, Institute for Advanced Studies.
    3. Reddy, Mahendra, 2002. "Implication of Tenancy Status on Productivity and Efficiency: Evidence from Fiji," Sri Lankan Journal of Agricultural Economics, Sri Lanka Agricultural Economics Association (SAEA), vol. 4, pages 1-20.
    4. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    5. Bernini, Cristina & Cerqua, Augusto & Pellegrini, Guido, 2017. "Public subsidies, TFP and efficiency: A tale of complex relationships," Research Policy, Elsevier, vol. 46(4), pages 751-767.
    6. I. Fraser & W. Horrace, 2003. "Technical Efficiency of Australian Wool Production: Point and Confidence Interval Estimates," Journal of Productivity Analysis, Springer, vol. 20(2), pages 169-190, September.
    7. Schalk Hans Joachim & Untiedt Gerhard & Lüschow Jörg, 1995. "Technische Effizienz, Wachstum und Konvergenz in den Arbeitsmarktregionen der Bundesrepublik Deutschland (West). Eine ökonometrische Analyse für die Verarbeitende Industrie mit einem „Frontier Product," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 214(1), pages 25-49, February.
    8. Martin, Sheila Ann, 1992. "The effectiveness of state technology incentives: evidence from the machine tool industry," ISU General Staff Papers 1992010108000011381, Iowa State University, Department of Economics.
    9. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    10. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    11. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    12. Vangelis Tzouvelekas & Konstantinos Giannakas & Peter Midmore & Konstantinos Mattas, 1997. "Technical efficiency measures for olive-growing farms in Crete, Greece," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 3(2), pages 154-169, May.
    13. Pavlos Almanidis & Robin C. Sickles, 2016. "Banking Crises, Early Warning Models, and Efficiency," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 331-364, Springer.
    14. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    15. Manlagnit, Maria Chelo V., 2015. "Basel regulations and banks’ efficiency: The case of the Philippines," Journal of Asian Economics, Elsevier, vol. 39(C), pages 72-85.
    16. Madau, Fabio A., 2011. "Parametric Estimation of Technical and Scale Efficiencies in Italian Citrus Farming," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(1).
    17. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    18. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    19. Raghbendra Jha & Hari K. Nagarajan & Subbarayan Prasanna, 2005. "Land Fragmentation and its Implications for Productivity: Evidence from Southern India," ASARC Working Papers 2005-01, The Australian National University, Australia South Asia Research Centre.
    20. Auci, Sabrina & Castelli, Annalisa, 2011. "Pollution and economic growth: a maximum likelihood estimation of environmental Kuznets curve," MPRA Paper 53441, University Library of Munich, Germany.

    More about this item

    Keywords

    agriculture production efficiency; regional cooperation; stochastic frontier model; emission reduction; Asian subregions;
    All these keywords.

    JEL classification:

    • F53 - International Economics - - International Relations, National Security, and International Political Economy - - - International Agreements and Observance; International Organizations
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • O53 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Asia including Middle East
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:adbiwp:1301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ADB Institute (email available below). General contact details of provider: https://edirc.repec.org/data/adbinjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.