IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The `Pile-up Problem' in Trend-Cycle Decomposition of Real GDP: Classical and Bayesian Perspectives

  • Kim, Chang-Jin
  • Kim, Jaeho

In the case of a flat prior, a conventional wisdom is that Bayesian inference may not be very different from classical inference, as the likelihood dominates the posterior density. This paper shows that there are cases in which this conventional wisdom does not apply. An ARMA model of real GDP growth estimated by Perron and Wada (2009) is an example. While their maximum likelihood estimation of the model implies that real GDP may be a trend stationary process, Bayesian estimation of the same model implies that most of the variations in real GDP can be explained by the stochastic trend component, as in Nelson and Plosser (1982) and Morley et al. (2003). We show such dramatically different results stem from the differences in how the nuisance parameters are handled between the two approaches, especially when the parameter estimate of interest is dependent upon the estimates of the nuisance parameters for small samples. For the maximum likelihood approach, as the number of the nuisance parameters increases, we have higher probability that the moving-average root may be estimated to be one even when its true value is less than one, spuriously indicating that the data is `over-differenced.' However, the Bayesian approach is relatively free from this pile-up problem, as the posterior distribution is not dependent upon the nuisance parameters.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/51118/1/MPRA_paper_51118.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 51118.

as
in new window

Length:
Date of creation: Oct 2013
Date of revision:
Handle: RePEc:pra:mprapa:51118
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gabriel Perez-Quiros & Margaret M. McConnell, 2000. "Output Fluctuations in the United States: What Has Changed since the Early 1980's?," American Economic Review, American Economic Association, vol. 90(5), pages 1464-1476, December.
  2. Newbold, Paul & Leybourne, Stephen & Wohar, Mark E., 2001. "Trend-stationarity, difference-stationarity, or neither: further diagnostic tests with an application to U.S. Real GNP, 1875-1993," Journal of Economics and Business, Elsevier, vol. 53(1), pages 85-102.
  3. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
  4. Murray, Christian J. & Nelson, Charles R., 2000. "The uncertain trend in U.S. GDP," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 79-95, August.
  5. Murray, Christian J & Nelson, Charles R, 2002. "The Great Depression and Output Persistence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(4), pages 1090-98, November.
  6. DeJong, David N, et al, 1992. "Integration versus Trend Stationarity in Time Series," Econometrica, Econometric Society, vol. 60(2), pages 423-33, March.
  7. John Y. Campbell & N. Gregory Mankiw, 1986. "Are Output Fluctuations Transitory?," NBER Working Papers 1916, National Bureau of Economic Research, Inc.
  8. Diebold, Francis X & Senhadji, Abdelhak S, 1996. "The Uncertain Unit Root in Real GNP: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1291-98, December.
  9. Clark, Peter K, 1987. "The Cyclical Component of U.S. Economic Activity," The Quarterly Journal of Economics, MIT Press, vol. 102(4), pages 797-814, November.
  10. Kim, Chang-Jin & Kim, Jaeho, 2013. "Bayesian Inference in Regime-Switching ARMA Models with Absorbing States: The Dynamics of the Ex-Ante Real Interest Rate Under Structural Breaks," MPRA Paper 51117, University Library of Munich, Germany.
  11. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  12. Harvey, A C, 1985. "Trends and Cycles in Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 216-27, June.
  13. Christiano, Lawrence J, 1992. "Searching for a Break in GNP," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 237-50, July.
  14. Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-70, July.
  15. Davidson, James E. H., 1981. "Problems with the estimation of moving average processes," Journal of Econometrics, Elsevier, vol. 16(3), pages 295-310, August.
  16. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
  17. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
  18. Christopher A. Sims & Harald Uhlig, 1988. "Understanding unit rooters: a helicopter tour," Discussion Paper / Institute for Empirical Macroeconomics 4, Federal Reserve Bank of Minneapolis.
  19. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
  20. DeJong, David N. & Whiteman, Charles H., 1991. "Reconsidering 'trends and random walks in macroeconomic time series'," Journal of Monetary Economics, Elsevier, vol. 28(2), pages 221-254, October.
  21. Sargan, J D & Bhargava, Alok, 1983. "Maximum Likelihood Estimation of Regression Models with First Order Moving Average Errors When the Root Lies on the Unit Circle," Econometrica, Econometric Society, vol. 51(3), pages 799-820, May.
  22. Gospodinov, Nikolay, 2002. "Bootstrap-Based Inference in Models with a Nearly Noninvertible Moving Average Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 254-68, April.
  23. DeJong, David N & Whiteman, Charles H, 1993. "Estimating Moving Average Parameters: Classical Pileups and Bayesian Posteriors," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 311-17, July.
  24. Plosser, Charles I. & Schwert, G. William, 1977. "Estimation of a non-invertible moving average process : The case of overdifferencing," Journal of Econometrics, Elsevier, vol. 6(2), pages 199-224, September.
  25. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  26. Ansley, Craig F. & Newbold, Paul, 1980. "Finite sample properties of estimators for autoregressive moving average models," Journal of Econometrics, Elsevier, vol. 13(2), pages 159-183, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:51118. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.