IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v100y2018i3p550-566.html

Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter

Author

Listed:
  • Günes Kamber

    (Bank for International Settlements and Reserve Bank of New Zealand)

  • James Morley

    (University of Sydney)

  • Benjamin Wong

    (Monash University, Australia, and Reserve Bank of New Zealand)

Abstract

The Beveridge-Nelson decomposition based on autoregressive models produces estimates of the output gap that are strongly at odds with widely held beliefs about transitory movements in economic activity. This is due to parameter estimates implying a high signal-to-noise ratio in terms of the variance of trend shocks as a fraction of the overall forecast error variance. When we impose a lower signal-to-noise ratio, the resulting Beveridge-Nelson filter produces a more intuitive estimate of the output gap that is large in amplitude and highly persistent, and it typically increases in expansions and decreases in recessions. Notably, our approach is also reliable in the sense of being subject to smaller revisions and predicting future output growth and inflation better than other trend-cycle decompositions that impose a low signal-to-noise ratio.

Suggested Citation

  • Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
  • Handle: RePEc:tpr:restat:v:100:y:2018:i:3:p:550-566
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/rest_a_00691
    Download Restriction: Access to PDF is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:100:y:2018:i:3:p:550-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.