IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/29591.html
   My bibliography  Save this paper

How uncertainty reduces greenhouse gas emissions

Author

Listed:
  • Schenker, Oliver

Abstract

China has becoming in 2006 the world’s largest emitter of greenhouse gases (GHG), responsible for one-fifth of world’s emissions from power generation. And further strong growth in this sector is to be expected. To provide these additional power generation capacities substantial investments in China’s energy infrastructure are necessary. But the potential investors are confronted with uncertainty in the design of China’s future climate policy, which might affect the profitability of GHG emitting power plants. It is the aim of this paper to investigate the role of uncertainty in China’s climate policy on investments in the electricity sector and its consequences for GHG emissions. We analyze the topic with a stochastic dynamic computable general equilibrium model with an extended energy sector and calibrated with Chinese data. The results show that uncertainty about the timing and extent of China’s climate policy lowers emissions compared to a world with perfect information. Uncertainty lowers the present value of coal-fired electricity in pre-policy periods and has so a positive effect for the environment.

Suggested Citation

  • Schenker, Oliver, 2011. "How uncertainty reduces greenhouse gas emissions," MPRA Paper 29591, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:29591
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/29591/1/MPRA_paper_29591.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Laurikka, Harri & Koljonen, Tiina, 2006. "Emissions trading and investment decisions in the power sector--a case study in Finland," Energy Policy, Elsevier, vol. 34(9), pages 1063-1074, June.
    3. Pindyck, Robert S, 1991. "Irreversibility, Uncertainty, and Investment," Journal of Economic Literature, American Economic Association, vol. 29(3), pages 1110-1148, September.
    4. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    7. Lau, Morten I. & Pahlke, Andreas & Rutherford, Thomas F., 2002. "Approximating infinite-horizon models in a complementarity format: A primer in dynamic general equilibrium analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(4), pages 577-609, April.
    8. Uzawa, H, 1969. "Time Preference and the Penrose Effect in a Two-Class Model of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 77(4), pages 628-652, Part II, .
    9. Devarajan, Shantayanan & Go, Delfin S., 1998. "The Simplest Dynamic General-Equilibrium Model of an Open Economy," Journal of Policy Modeling, Elsevier, vol. 20(6), pages 677-714, December.
    10. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    11. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Avinash Dixit, 1992. "Investment and Hysteresis," Journal of Economic Perspectives, American Economic Association, vol. 6(1), pages 107-132, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Dolgopolova & Bo Hu & Armin Leopold & Stefan Pickl, 2014. "Economic, institutional and technological uncertainties of emissions trading—a system dynamics modeling approach," Climatic Change, Springer, vol. 124(3), pages 663-676, June.
    2. S. Scrieciu & Valerie Belton & Zaid Chalabi & Reinhard Mechler & Daniel Puig, 2014. "Advancing methodological thinking and practice for development-compatible climate policy planning," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(3), pages 261-288, March.
    3. Mohajan, Haradhan, 2011. "Greenhouse gas emissions increase global warming," MPRA Paper 50839, University Library of Munich, Germany, revised 18 Apr 2011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotidis, Theodore & Printzis, Panagiotis, 2020. "What is the investment loss due to uncertainty?," Global Finance Journal, Elsevier, vol. 45(C).
    2. Yu, Jing & Xu, Bin, 2011. "The game analyses to price the target enterprise of merger and acquisition based on the perspective of real options under stochastic surroundings," Economic Modelling, Elsevier, vol. 28(4), pages 1587-1594, July.
    3. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    4. Hieronymi, Philipp & Schüller, David, 2015. "The Clean-Development Mechanism, stochastic permit prices and energy investments," Energy Economics, Elsevier, vol. 47(C), pages 25-36.
    5. Bellalah, Mondher, 2016. "Issues in real options with shadow costs of incomplete information and short sales," The Journal of Economic Asymmetries, Elsevier, vol. 13(C), pages 45-56.
    6. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    7. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    8. Gabriel P. Mathy, 2020. "How much did uncertainty shocks matter in the Great Depression?," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 14(2), pages 283-323, May.
    9. Caren Sureth, 2002. "Partially Irreversible Investment Decisions and Taxation under Uncertainty: A Real Option Approach," German Economic Review, Verein für Socialpolitik, vol. 3(2), pages 185-221, May.
    10. Timo Busch & Volker Hoffmann, 2009. "Ecology-Driven Real Options: An Investment Framework for Incorporating Uncertainties in the Context of the Natural Environment," Journal of Business Ethics, Springer, vol. 90(2), pages 295-310, December.
    11. Turvey, Calum G., 2002. "Can Hysteresis And Real Options Explain The Farmland Valuation Puzzle?," Working Papers 34131, University of Guelph, Department of Food, Agricultural and Resource Economics.
    12. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    13. Anastasios Michailidis & Konstadinos Mattas, 2007. "Using Real Options Theory to Irrigation Dam Investment Analysis: An Application of Binomial Option Pricing Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1717-1733, October.
    14. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    15. Gjolberg, Ole & Guttormsen, Atle G., 2002. "Real options in the forest: what if prices are mean-reverting?," Forest Policy and Economics, Elsevier, vol. 4(1), pages 13-20, May.
    16. Strothmann, Christian, 2007. "Die Bewertung Strategischer Allianzen mit dem Realoptionsansatz," Arbeitspapiere 69, University of Münster, Institute for Cooperatives.
    17. Shahnazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2014. "Evaluation of power investment decisions under uncertain carbon policy: A case study for converting coal fired steam turbine to combined cycle gas turbine plants in Australia," Applied Energy, Elsevier, vol. 118(C), pages 271-279.
    18. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    19. Anastasios Michailidis & Konstadinos Mattas & Irene Tzouramani & Diamantis Karamouzis, 2009. "A Socioeconomic Valuation of an Irrigation System Project Based on Real Option Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1989-2001, August.
    20. Rodriguez Lopez, Juan Miguel & Sakhel, Alice & Busch, Timo, 2017. "Corporate investments and environmental regulation: The role of regulatory uncertainty, regulation-induced uncertainty, and investment history," European Management Journal, Elsevier, vol. 35(1), pages 91-101.

    More about this item

    Keywords

    China; Energy Policy; Climate Policy; Investment under Uncertainty; Stochastic and Dynamic CGE Model;
    All these keywords.

    JEL classification:

    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:29591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.