IDEAS home Printed from
   My bibliography  Save this paper

The Perils of Peer Effects


  • Joshua Angrist


Individual outcomes are highly correlated with group average outcomes, a fact often interpreted as a causal peer effect. Without covariates, however, outcome-on-outcome peer effects are vacuous, either unity or, if the average is defined as leave-out, determined by a generic intraclass correlation coefficient. When pre-determined peer characteristics are introduced as covariates in a model linking individual outcomes with group averages, the question of whether peer effects or social spillovers exist is econometrically identical to that of whether a 2SLS estimator using group dummies to instrument individual characteristics differs from OLS estimates of the effect of these characteristics. The interpretation of results from models that rely solely on chance variation in peer groups is therefore complicated by bias from weak instruments. With systematic variation in group composition, the weak IV issue falls away, but the resulting 2SLS estimates can be expected to exceed the corresponding OLS estimates as a result of measurement error and other reasons unrelated to social effects. Randomized and quasi-experimental research designs that manipulate peer characteristics in a manner unrelated to individual characteristics provide the strongest evidence on the nature of social spillovers. As an empirical matter, designs of this sort have uncovered little in the way of socially significant causal effects.

Suggested Citation

  • Joshua Angrist, 2013. "The Perils of Peer Effects," NBER Working Papers 19774, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:19774
    Note: CH ED

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Bruno Crépon & Esther Duflo & Marc Gurgand & Roland Rathelot & Philippe Zamora, 2013. "Do Labor Market Policies have Displacement Effects? Evidence from a Clustered Randomized Experiment," The Quarterly Journal of Economics, Oxford University Press, vol. 128(2), pages 531-580.
    2. Andreas Ammermueller & Jörn-Steffen Pischke, 2009. "Peer Effects in European Primary Schools: Evidence from the Progress in International Reading Literacy Study," Journal of Labor Economics, University of Chicago Press, vol. 27(3), pages 315-348, July.
    3. Bryan S. Graham, 2008. "Identifying Social Interactions Through Conditional Variance Restrictions," Econometrica, Econometric Society, vol. 76(3), pages 643-660, May.
    4. Jacob M. Markman & Eric A. Hanushek & John F. Kain & Steven G. Rivkin, 2003. "Does peer ability affect student achievement?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(5), pages 527-544.
    5. Sacerdote, Bruce, 2011. "Peer Effects in Education: How Might They Work, How Big Are They and How Much Do We Know Thus Far?," Handbook of the Economics of Education, Elsevier.
    6. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    7. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    8. Scott E. Carrell & Frederick V. Malmstrom & James E. West, 2008. "Peer Effects in Academic Cheating," Journal of Human Resources, University of Wisconsin Press, vol. 43(1).
    9. Raj Chetty & John N. Friedman & Nathaniel Hilger & Emmanuel Saez & Diane Whitmore Schanzenbach & Danny Yagan, 2011. "How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from Project Star," The Quarterly Journal of Economics, Oxford University Press, vol. 126(4), pages 1593-1660.
    10. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," Review of Economic Studies, Oxford University Press, vol. 68(2), pages 235-260.
    11. Daron Acemoglu & Joshua Angrist, 2001. "How Large are Human-Capital Externalities? Evidence from Compulsory-Schooling Laws," NBER Chapters,in: NBER Macroeconomics Annual 2000, Volume 15, pages 9-74 National Bureau of Economic Research, Inc.
    12. Edward L. Glaeser & Bruce I. Sacerdote & Jose A. Scheinkman, 2003. "The Social Multiplier," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 345-353, 04/05.
    13. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    14. Townsend, Robert M, 1994. "Risk and Insurance in Village India," Econometrica, Econometric Society, vol. 62(3), pages 539-591, May.
    15. Joshua D. Angrist & Kevin Lang, 2004. "Does School Integration Generate Peer Effects? Evidence from Boston's Metco Program," American Economic Review, American Economic Association, vol. 94(5), pages 1613-1634, December.
    16. Marianne Bertrand & Erzo F. P. Luttmer & Sendhil Mullainathan, 2000. "Network Effects and Welfare Cultures," The Quarterly Journal of Economics, Oxford University Press, vol. 115(3), pages 1019-1055.
    17. Esther Duflo & Pascaline Dupas & Michael Kremer, 2011. "Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya," American Economic Review, American Economic Association, vol. 101(5), pages 1739-1774, August.
    18. Charles F. Manski, 2000. "Economic Analysis of Social Interactions," Journal of Economic Perspectives, American Economic Association, vol. 14(3), pages 115-136, Summer.
    19. Scott E. Carrell & Bruce I. Sacerdote & James E. West, 2013. "From Natural Variation to Optimal Policy? The Importance of Endogenous Peer Group Formation," Econometrica, Econometric Society, vol. 81(3), pages 855-882, May.
    20. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    21. Atila Abdulkadiroğlu & Joshua Angrist & Parag Pathak, 2014. "The Elite Illusion: Achievement Effects at Boston and New York Exam Schools," Econometrica, Econometric Society, vol. 82(1), pages 137-196, January.
    22. Jeffrey R Kling & Jeffrey B Liebman & Lawrence F Katz, 2007. "Experimental Analysis of Neighborhood Effects," Econometrica, Econometric Society, vol. 75(1), pages 83-119, January.
    23. Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
    24. Michael A. Boozer & Stephen E. Cacciola, 2001. "Inside the 'Black Box' of Project STAR: Estimation of Peer Effects Using Experimental Data," Working Papers 832, Economic Growth Center, Yale University.
    25. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    26. Jonathan Guryan & Kory Kroft & Matthew J. Notowidigdo, 2009. "Peer Effects in the Workplace: Evidence from Random Groupings in Professional Golf Tournaments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 34-68, October.
    27. Bruce Sacerdote, 2001. "Peer Effects with Random Assignment: Results for Dartmouth Roommates," The Quarterly Journal of Economics, Oxford University Press, vol. 116(2), pages 681-704.
    28. Lang, Kevin, 1993. "Ability Bias, Discount Rate Bias and the Return to Education," MPRA Paper 24651, University Library of Munich, Germany.
    29. Joshua D. Angrist & Stacey H. Chen, 2011. "Schooling and the Vietnam-Era GI Bill: Evidence from the Draft Lottery," American Economic Journal: Applied Economics, American Economic Association, vol. 3(2), pages 96-118, April.
    30. Ashenfelter, Orley & Krueger, Alan B, 1994. "Estimates of the Economic Returns to Schooling from a New Sample of Twins," American Economic Review, American Economic Association, vol. 84(5), pages 1157-1173, December.
    31. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    32. Harry H. Kelejian & Ingmar R. Prucha & Yevgeny Yuzefovich, 2006. "Estimation Problems In Models With Spatial Weighting Matrices Which Have Blocks Of Equal Elements," Journal of Regional Science, Wiley Blackwell, vol. 46(3), pages 507-515.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:19774. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.